001038881 001__ 1038881
001038881 005__ 20250310131238.0
001038881 0247_ $$2doi$$a10.3390/agronomy15020353
001038881 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01696
001038881 0247_ $$2WOS$$aWOS:001429883700001
001038881 037__ $$aFZJ-2025-01696
001038881 041__ $$aEnglish
001038881 082__ $$a640
001038881 1001_ $$0P:(DE-Juel1)207833$$aBorges, Roger$$b0$$eCorresponding author$$ufzj
001038881 245__ $$aOptimizing Cassava Growth with Localized Struvite Application: Root Proliferation and Fertilization Efficiency
001038881 260__ $$aBasel$$bMDPI$$c2025
001038881 3367_ $$2DRIVER$$aarticle
001038881 3367_ $$2DataCite$$aOutput Types/Journal article
001038881 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739261759_6216
001038881 3367_ $$2BibTeX$$aARTICLE
001038881 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038881 3367_ $$00$$2EndNote$$aJournal Article
001038881 520__ $$aCassava is a root storage crop that is important to the starch industry and food security. In this study, the sustainable fertilization of cassava using local placement of struvite, a fertilizer recovered from wastewater, rich in nitrogen, phosphorus, and magnesium, was investigated. It was asked if struvite is a suitable fertilizer for cassava, if it is likely to spread through the substrate (leach), and if roots can proliferate and utilize a concentrated placement of struvite. Cassava was grown in rhizoboxes under different fertilizer placement strategies: unfertilized control, homogeneous fertilizer distribution in the top 20 cm (‘homogenized’), a strip placement (‘layer’) at 20 cm depth, and a localized ‘depot’ at the same depth. Shoot and root growth responses were monitored over 8 weeks. Cassava growth was significantly improved with struvite fertilization. The fertilizer remained localized, with minimcnal spread during the 8 weeks of experimentation. Both the ‘layer’ and ‘homogenized’ struvite placements resulted in comparable biomass production, significantly greater than the unfertilized treatment. Plants in the ‘depot’ placement initially grew similar to the unfertilized treatment as roots took time to locate and proliferate into the fertilizer depot. Afterward, plants in the ‘depot’ treatment grew quickly, resulting in an intermediate biomass at harvest. Notably, cassava exhibited strong root proliferation in response to concentrated struvite, which did not compromise deep rooting but instead appeared to enhance it, increasing specific root length. These findings suggest that strip fertilization with struvite may offer a sustainable fertilization strategy for cassava, warranting further investigation in field trials.
001038881 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001038881 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038881 7001_ $$00000-0003-4279-2053$$aGiroto, Amanda S.$$b1
001038881 7001_ $$0P:(DE-Juel1)179231$$aOhrem, Benedict$$b2
001038881 7001_ $$0P:(DE-Juel1)200478$$aBeckmann, Silas$$b3$$ufzj
001038881 7001_ $$0P:(DE-Juel1)195883$$aAdemi, Ali$$b4$$ufzj
001038881 7001_ $$0P:(DE-Juel1)165832$$aBoeckem, Vera$$b5$$ufzj
001038881 7001_ $$0P:(DE-Juel1)179094$$aBochmann, Helena$$b6$$ufzj
001038881 7001_ $$0P:(DE-Juel1)142555$$aMüller-Linow, Mark$$b7
001038881 7001_ $$0P:(DE-Juel1)159493$$aLenz, Henning$$b8
001038881 7001_ $$0P:(DE-Juel1)177079$$aRibeiro, Caue$$b9
001038881 7001_ $$0P:(DE-Juel1)156560$$aWojciechowski, Tobias$$b10
001038881 7001_ $$0P:(DE-Juel1)129475$$aJablonowski, Nicolai D.$$b11$$eCorresponding author
001038881 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes A.$$b12$$eCorresponding author
001038881 773__ $$0PERI:(DE-600)2607043-1$$a10.3390/agronomy15020353$$gVol. 15, no. 2, p. 353 -$$n2$$p353 -$$tAgronomy$$v15$$x2073-4395$$y2025
001038881 8564_ $$uhttps://juser.fz-juelich.de/record/1038881/files/Borges_EtAl_2025_Optimizing%20Cassava%20Growth%20with%20Localized%20Struvite%20Application_Root%20Proliferation%20and%20Fertilization%20Efficiency.pdf$$yOpenAccess
001038881 909CO $$ooai:juser.fz-juelich.de:1038881$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207833$$aForschungszentrum Jülich$$b0$$kFZJ
001038881 9101_ $$0I:(DE-HGF)0$$60000-0003-4279-2053$$a Embrapa Instrumentation, XV de Novembro St. 1452, São Carlos 13560-970, SP, Brazil$$b1
001038881 9101_ $$0I:(DE-HGF)0$$60000-0003-4279-2053$$a Institute of Bio and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany$$b1
001038881 9101_ $$0I:(DE-HGF)0$$60000-0003-4279-2053$$a Science and Technology Institute, Federal University of São Paulo, 330 Talim Street, São José dos Campos 12231-280, SP, Brazil$$b1
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179231$$aForschungszentrum Jülich$$b2$$kFZJ
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200478$$aForschungszentrum Jülich$$b3$$kFZJ
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195883$$aForschungszentrum Jülich$$b4$$kFZJ
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165832$$aForschungszentrum Jülich$$b5$$kFZJ
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179094$$aForschungszentrum Jülich$$b6$$kFZJ
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142555$$aForschungszentrum Jülich$$b7$$kFZJ
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159493$$aForschungszentrum Jülich$$b8$$kFZJ
001038881 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177079$$a Embrapa Instrumentation, XV de Novembro St. 1452, São Carlos 13560-970, SP, Brazil$$b9
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156560$$aForschungszentrum Jülich$$b10$$kFZJ
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129475$$aForschungszentrum Jülich$$b11$$kFZJ
001038881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b12$$kFZJ
001038881 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001038881 9141_ $$y2025
001038881 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001038881 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001038881 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAGRONOMY-BASEL : 2022$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:26:52Z
001038881 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:26:52Z
001038881 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038881 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001038881 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:26:52Z
001038881 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001038881 980__ $$ajournal
001038881 980__ $$aVDB
001038881 980__ $$aUNRESTRICTED
001038881 980__ $$aI:(DE-Juel1)IBG-2-20101118
001038881 9801_ $$aFullTexts