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Abstract: Protolytic reactions on the surface of a titania photocatalyst (TiO2 P25 containing
chlorine impurities) were studied using potentiometric and calorimetric acid-base titration.
The impurity was removed by either washing or heat treatment. The efficiency of purifica-
tion was tested by chlorine (TOX) analysis and acid-base titration. Common intersection
points of −0.023 and −0.021 mmol/g were obtained for the original and 400 ◦C heat-treated
samples, which are in good agreement with the measured TOX value of 28 mmol/kg. The
point of zero charge of the purified sample was determined to be 6.50. Titration data were
fitted to simulate protolytic reactions during isothermal calorimetric titrations of purified
titania. The evolved heat was measured, and data points were corrected with the heat
of mixing and neutralization. The quantity of charged surface species formed in each
step of titration was calculated using the parameters from the constant capacitance model
fit. The partial molar enthalpy values of the exothermic and endothermic processes of
surface protonation (∆Hpr, −17.47 to −16.10 kJ/mol) and deprotonation (∆Hdepr, 32.53 to
27.08 kJ/mol) depend slightly on the ionic strength of suspensions. The average standard
enthalpy of one proton transfer reaction is −23.54 ± 1.75 kJ/mol, which is consistent with
the literature.

Keywords: titania; TiO2 P25; surface charging; surface complexation model (SCM);
calorimetry; potentiometry; partial molar enthalpy; standard enthalpy

1. Introduction
Surface hydroxyl groups are known to play a significant role in the photocatalytic

behavior of TiO2 nanoparticles (titania). It is believed that the •OH radicals from hole-
trapping by surface hydroxyl groups (≡Ti-OH) are the primary oxidizing agents in aqueous
TiO2 suspensions [1]. The dissociative character of H2O adsorption on titania, producing
≡Ti-OH sites, is strongly affected by the surface structure (crystallinity, roughness, etc.) [2,3].
Dissociation prevails at surface sites with a high degree of coordinative unsaturation [4],
which even affects photocatalytic hydrogen production, as revealed in a recent article [5].
It has been shown that the photocatalytic efficiency strongly depends on pH, especially
in water purification [6]. In aqueous systems, the pH is a determining parameter in the
operating conditions of the photoreactors, as it affects the surface charge of catalyst particles
and therefore the adsorption of pollutants, colloidal stability/aggregation and suspension
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transparency, as well as the position of conductance and valence bands. The role of pH is
widely studied [7,8], discussed [9,10], modelled [5,6,11,12] or just mentioned in the latest
literature. pH-dependent surface charges originating from the protolytic reactions on
≡Ti-OH sites generate electrified interfaces [13] on the surface of TiO2 particles immersed
in electrolyte solutions, which fundamentally influence the distribution of ions of not only
electrolytes but also dissolved organic pollutants, just to mention the most frequently used
model compounds such as ionic dyes (MB, AOII), phenols, chlorophenols, etc.. Recent
studies [6,9,10,14,15] emphasize that adsorption on the TiO2 depends on the pH and ionic
strength of the medium, consistent with the charge evolution on the TiO2 surface.

Potentiometric acid-base, frequently referred to as surface charge titration of oxides is
the most commonly used method to quantitatively characterize charge formation on the
reactive sites of particle surfaces [16–18]. Most of the literature is from the heyday of the
surface charge characterization of metal oxides, decades ago. The 2-pK model of surface
charging for titania describes the protonation reaction as:

≡Ti-OH + H+ ⇔ ≡Ti-OH2
+ Kpr, ∆G0

pr, ∆H0
pr (1)

and deprotonation as

≡Ti-OH ⇔ ≡Ti-O− + H+ Kdepr, ∆G0
depr, ∆H0

depr (2)

where Ki is the thermodynamic equilibrium constant, ∆G0
i is the standard Gibbs free

energy and ∆H0
i is the standard enthalpy of the given surface reaction. To get the standard

enthalpy change of the 1-pK protonation reaction [19] we subtract Equation (2) from
Equation (1) and apply Hess’s law, a basic thermochemistry,

≡Ti-O− + 2H+ ⇔ ≡Ti-OH2
+ ∆H0

pr − ∆H0
depr (3)

and divide the resulting reaction by two, as it is written for one proton transfer, thus, we
can express the 1-pK protonation reaction and its thermodynamic parameters as follows:

≡Ti-OH1/2− + H+ ⇔ ≡Ti-OH2
1/2+ K1pK, ∆G0

1pK, ∆H0
1pK = (∆H0

pr − ∆H0
depr)/2 (4)

For the latter reaction, the logarithm of the equilibrium constant equals the pHPZC,
(pH of the point of zero charge (PZC)), where oppositely charged surface sites are present
in equal amounts:

pHPZC = logK1pK =
1
2

log
Kpr

Kdepr
(5)

Quantitative characterization of these reactions needs precise proton analytics. In-
formation on the composition of interfacial layer from potentiometric titration is indirect
and is most likely affected by assumptions made during data evaluation. The only direct
information obtained from the experiments is the change in the activity of H+-ions in the
bulk solution [20]. The effect of trace of impurities and additional acid-base reactions are
often neglected.

The thermodynamics of interfacial acid-base reactions in aqueous oxide suspensions
can be characterized by either direct isotherm titration calorimetry (ITC) or by using
temperature-dependent measurements of PZC from titration or IEP (isoelectric point)
measurements from electrophoresis [21–24]. In the latter, for example, the plot of pHPZC

vs. 1/T is a linear function and the standard enthalpy of surface protolytic process can be
calculated from the slope [21,25,26].
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In the interpretation of the measured calorimetric data, however, one encounters
the problem of distinguishing between the different contributions [27]. In simple cases,
like surface charging due to the adsorption of potential determining ions, calorimetric
experiments may be designed in an appropriate way and the measured data may be
interpreted [27]. Another issue is how to account for the incorporated electrostatic effect.
The enthalpy of surface charging reaction (∆Hr) can be separated into a “chemical” (i.e.,
the standard ∆Hr

0) and an electrostatic (∆Hr
elec) contribution [24].

∆Hr = ∆H0
r + ∆Helec

r (6)

The electrostatic contribution is described by a Gibbs-Helmholtz relationship [23]

∆Helec
r = F∆zT

(
∂ψ0

∂T

)
p
+ F∆zΨ0 (7)

where F is the Faraday constant; ∆z is the change in surface charge due to the adsorption
reaction; T is the temperature; (∂ψ0/∂T)p is the temperature coefficient of the surface
potential (ψ0) at constant pressure and F∆zψ0 is the electrostatic contribution to the Gibbs
energy (∆Gelec). The electrostatic enthalpy contribution can be larger or smaller than the
electrostatic free energy, depending on the sign of the coefficient (∂ψ0/∂T)p.

The Gibbs energy attributed to the given surface charging reaction is defined by the
standard (∆G0) and electrostatic (∆Gelec) contributions.

∆Gr = ∆G0
r + ∆Gelec

r (8)

The 1-pK protonation reaction can be specified as half of the difference between the
2-pK protonation and deprotonation reactions. Thus, the change in standard Gibbs energy
attributed to the 1-pK protonation reaction in Equation (4) is given by:

∆G0
1pK =

(
∆G0

pr − ∆G0
depr

)
2

(9)

Using Equation (5) and knowing that ∆G0 = -RT lnK and ∆G0 = ∆H0 − T∆S0 we obtain:

pHPZC = −
∆H0

1pK

RTln10
+

∆S0
1pK

Rln10
(10)

Rodriguez-Santiago et al. [22] use the following expression for the Gibbs energy of the
1-pK protonation reaction, assuming a constant isobaric heat capacity for protonation:

∆G0
T0

= ∆G0
T0
− (T − T0)∆S0

T0
+

(
T − T0 − Tln

T
T0

)
∆C0

p T0
(11)

∆G0
T0, ∆S0

T0, and ∆C0
pT0 are the standard Gibbs energy, entropy and isobaric heat capacity

of the 1-pK protonation reaction (Equation (4)), T0 is the reference temperature (298.15 K) and
T is the working temperature. Using the thermodynamic equations above, they deduce:

pHiep,T =
∆S0

T0
− ∆C0

pT0
(1 + lnT0)

Rln10
+

−∆H0
T0
+ ∆C0

pT0
T0

RTln10
+

∆C0
pT0

lnT

Rln10
(12)

pHiep,T is the measured isoelectric point from electrophoresis data for a given metal oxide
and is equal to pHPZC if there is no specific adsorption of ions other than the potential
determining H+ ions [13]. If the reference and working temperature are the same the
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above Equation (12) is equal to Equation (10). Kallay et al. [21] provide the thermodynamic
equations of titania for the following reaction:

≡Ti-OH2
+ ⇔ ≡Ti-O− + 2H+ ∆dpH0 = ∆H0

depr − ∆H0
pr (13)

The resulting equation that relates the pHPZC to thermodynamic properties (T = 298.15 K)
is as follows:

pHPZC =
∆dp H0

2RTln10
−

∆dpS0

2Rln10
(14)

The standard enthalpy and entropy for reaction (13) differ from the ones obtained by
Equation (10) because the latter corresponds to the 1-pK protonation reaction. The enthalpy
change for reaction (13), obtained directly from the so-called “symmetric” calorimetric
measurements [24,27], in which the electrostatic contribution to the enthalpy can be ne-
glected, is opposite in sign and twice that of the 1-pK reaction (4). It should be noted that
reaction (13) is the reverse of reaction (3).

Hall [28] describes the thermodynamic aspects of the ionization process on the surface
of insoluble solids with fixed dissociable groups. He derives that the temperature depen-
dence of potentiometric titration curves relates to well-defined, calorimetrically measurable
enthalpies of protonation. It is shown that the partial molar enthalpy of protonation is
independent of the surface excess concentration (∂Γp) of potential determining ions at
constant temperature (T), pressure (p), and bulk concentration of supporting electrolyte
ions (mi): (

∂∆Hp/∂Γp
)

T,p,mi
= 0 (15)

which results from temperature congruence. Hall [28] stated that the heat evolved in the
direct calorimetry can be attributed almost entirely to the inner region of the electric double
layer where the chemical reactions occur. There is, however, only a small contribution to
the total enthalpy change of surface charging (H − H0) from the diffuse layer.

In our previous work [29], calorimetric acid-base titration of alumina (Degussa C)
was performed at three different ionic strengths. We demonstrated that measured heats
can only be attributed to the corresponding reactions if the experiments are carefully
conducted in well-controlled systems, free from side reactions caused by impurities or
sample dissolution. We found that the surface reaction of protonation was exothermic,
but deprotonation was endothermic. A weak dependence of reaction enthalpies on ionic
strength (a few kJ/mol) was observed, as predicted by Hall [28]. The extrapolated partial
molar enthalpy values at zero ionic strength (−34 and 34.6 kJ/mol for protonation and
deprotonation reactions, respectively) showed excellent agreement with the calculated
standard enthalpy (34.6 ± 0.6 kJ/mol) for the 1-pK protolytic reaction of alumina.

In the 1970s, titania was one of the model materials to investigate ionizable surfaces,
leading to the development of surface ionization and complexation models [16], later
called surface complexation models [17,30,31]. The proton-induced surface charging of
nanocrystalline anatase has been studied by potentiometric titrations and electrophoretic
mobility measurements [32], however, detailed thermodynamic characterization of surface
protolytic reactions on titania nanoparticles still contains unanswered questions. Gun’ko
et al. [33] reported the heat of immersion for titania (0.26 kJ/m2, exothermic) and other
fumed oxide powders. Previous work on calorimetric acid-base titrations of aqueous
rutile suspensions revealed that proton adsorption and desorption enthalpies were largely
reversible in respect to sign over the range of pH 4–10 and no dependence on ionic strength
(in 0.01–0.1 M NaNO3) was apparent [23]. De Keizer and coworkers [34] measured the
heat of proton adsorption for rutile using ITC and the calorimetric heat (−21 kJ/mol) at the
PZC agreed well with the corresponding enthalpies derived from the shift of pHPZC with
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temperature (∆Hpr = ∂pHPZC/∂T = −18 kJ/mol for TiO2). They concluded that the enthalpy
of charge formation depends on the nature of the oxide but is practically independent
of surface charge density and electrolyte concentration [34]. Kallay and coworkers [21]
investigated the calorimetric heat effects accompanying the acid-base titration of purified
TiO2 P25. They determined the difference in partial molar enthalpies of protonation and
deprotonation reactions (50 kJ/mol), which was similar to the value obtained from their
calorimetric titration (55 ± 5 kJ/mol). In a later published study by [22], high-temperature
electrophoresis data (isoelectric point (IEP) and zeta potential) of metal oxides, including
TiO2, were used for thermodynamic analysis to derive standard enthalpies for surface
protonation reactions. Rodriguez-Santiago and colleagues also used a combination of
crystal chemical and solvation theories to determine these enthalpy values. The 1-pK
protonation enthalpy for rutile was −23.2 and −24.7 kJ/mol [22].

The aim of our work was to characterize the pH-dependent surface charging of the
most frequently used photocatalyst, TiO2 P25 nanoparticles, and to investigate the effect
of the concentration of an indifferent electrolyte. The potentiometric and calorimetric
measurements were meticulously planned and conducted under controlled experimental
conditions, based on our previous experience with sample pretreatment and modeling [29].
We evaluated the results of potentiometric and calorimetric acid-base titrations, interpreting
the likely surface charging reactions and the influence of the electric double layer on the
partial molar enthalpy of surface protolytic processes. Additionally, we aimed to highlight
the similarities and differences between our findings and those reported in the literature
through comparative analysis.

2. Results and Discussion
2.1. Quantitative Characterization of Surface Charge Formation on Titania Nanoparticles

Different metal oxides may have varying impurities depending on the production
process used. TiO2 P25, a commercial product, contains chlorine contamination as a by-
product of the flame hydrolysis of TiCl4. In aqueous media, this chlorine content undergoes
hydrolysis, releasing acidic species into the bulk liquid phase, which lowers the pH of
suspension to an acidic range of 3.5–5.5 in dense suspensions. Heat treatment at high
temperature has been proven effective for removing chlorine contamination from similarly
produced alumina [35]. However, care must be taken when selecting the temperature, as
crystalline phases like the well-known anatase-to-rutile phase transition, may undergo
degradation above 400 ◦C [36]. An alternative purification method is exhaustive washing
of the oxide sample with pure water, which is more favorable as it should preserve the
crystalline structure.

2.1.1. Chlorine Impurity: Measurement and Removal

The chlorine impurity of TiO2 P25 sample results in a total HCl content of less than
~8.2 × 10−5 mol/g, as calculated from the value (<0.3%) provided by the manufacturer [37].
A significantly lower concentration, 2.8 × 10−5 mol/g, was determined by the TOX (Total
Organic Halogen) measurement for the original TiO2 sample. After heat treatment at
400 and 600◦C, the chlorine content was reduced to 2.6 × 10−5 and 1.4 × 10−6 mol/g,
respectively. Thorough washing of the TiO2 P25 sample—facilitated by raising pH to 10
and then lowering it—resulted in a further reduction of chlorine to 1.6 × 10−6 mol/g.
It can be stated that both exhaustive washing of TiCl4 hydrolysis products in aqueous
suspension and heat treatment of the titania powder at 600 ◦C are effective methods for
chlorine removal.
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2.1.2. Potentiometric Titration

Potentiometric acid-base titration is one of the most frequently applied methods for
quantitative characterization of surface charge formation, but one must treat experimental
data with care, taking the limitations of the method into consideration. A common mistake
is neglecting impurities and additional reactions, attributing all H+/OH− consumption
solely to surface charge formation. Dissolution of the given oxide is also a substantial
factor when choosing the pH-range of the acid-base titration. Unlike alumina [35] or ZnO2,
TiO2 can be used safely over a broader pH-range (2–12), where the dissolution of the
sample may be negligible The result of the potentiometric titration of oxides is the net
proton consumption vs. pH function. To consider these as specific net surface proton
excess functions, they must meet the following criteria: (i) reversible up and down curves,
(ii) appropriate ionic strength dependence of the curves, (iii) coincidence of the common
intersection point (CIP) of the curves and theoretical PZC. If not, one must consider specific
ion adsorption or the presence of acidic/basic impurities, and purification of the sample
is required. If the CIP of the curves depends on the quality of the background electrolyte
used and pHcip ̸= pHPZC, specific adsorption should be considered. If pHcip = pHPZC

but CIP ̸= PZC, this indicates the presence of some free acid or base. To obtain an ideal
reference state, purification of the sample is necessary to achieve CIP = PZC [13,20,38].

Potentiometric acid-base titration of heat treated and purified samples were carried
out over the range of pH 3 to 10 in the indifferent electrolyte KNO3. The net proton
consumption vs. pH curves of the three different background electrolyte concentrations
intersect at a common intersection point (CIP). The curves are shown in Figures 1 and 2
and are similar to those frequently found in the literature [16,39]. Due to the chemical
stability of titania in the pH region studied here, no sign of solid-phase dissolution was
observed. The pHPZC values determined from the net proton consumption vs. pH curves
for the purified titania samples at the different ionic strengths were very similar to the
values reported for TiO2 P25 [17], with an average value of pH = 6.5 ± 0.1.
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Figure 1. Net proton consumption vs. pH functions of the original (a) and washed (b) titanium oxide
samples in 0.5, 0.05 and 0.005 M KNO3.

Considering the free acid released upon the hydrolysis of TiCl4 in reaction (19) the
observed shift (shown in Figure 1a) of the CIP to negative values of the net proton con-
sumption for the original and purified samples is attributed to the acidic (HCl) impurity.
The estimated HCl concentration of 2.25 × 10−5 mol/g for the original sample is similar to
the value obtained from the TOX measurement (2.8 × 10−5 mol/g).
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Figure 2. Net proton consumption vs. pH functions of the heat-treated samples of titania: on 400 ◦C
(a) and 600 ◦C (b) in 0.5, 0.05 and 0.005 M KNO3. For comparison the curves of washed sample is
also given (b).

The net proton consumption curves of the original sample after heating at 400 ◦C in
Figure 2a clearly demonstrate that the amount of acidic impurity does not significantly
decrease. Therefore, heat treatment at this temperature was not successful in removing chlo-
rine contaminants from the sample. Heating the sample at temperature of 600 ◦C resulted
in shifting of the CIP of the curves to zero net proton consumption (pHPZC). Although the
sample appears to be purified, a significant (20–30%) decrease in the amount of ≡Ti-OH
active sites available for surface protolysis is observed in the Figure 2b, where titration
data for the washed and heated samples are compared. This is likely a consequence of the
anatase-to-rutile phase transition, which is possible at this temperature [36]. As a result, the
exhaustive washing process used to purify the TiO2 P25 sample is more favorable compared
to alumina purification, where heat treatment has been the effective method to reduce
chlorine content [35]. The remaining impurity in the washed sample (1.6 × 10−6 mol/g
by TOX) suggests that the hydrolysis process could be hindered by chloride ions already
present in the equilibrium liquid phase. This amount of chlorine contaminant and the
resulting hydrolysis product is too small to be detected by the proton analytics used. We
are convinced that a well-designed washing procedure better preserves the active sites,
as heat treatment is accompanied by surface dehydration and dehydroxylation at higher
temperature, in addition to the potential phase transformation of the crystal lattice. Notably,
it has been recently reported that the residual chloride impurities can affect the adsorption
of target molecules but have no impact on photocatalytic performance [9].

To check the reversibility of the processes, the forward and backward curves were com-
pared. As shown in Figure 3, the acid-base reactions—i.e., surface charging of titania and
neutralization of its impurities—are reversible at each concentration of indifferent KNO3

electrolyte, within the experimental error of potentiometric titrations. This type of comparison
is rarely found in the literature, as previously discussed [20]. The clear separation and identifi-
cation of the CIP points is also exceptional, which was made possible by our unique calibration
process developed [20]. We use double calibration: both the pH scale with standard buffers
and the H+/OH− concentration with blank electrolyte titrations are calibrated. Therefore,
potentiometric measurements allow for concentration-based calculations, eliminating the need
for CIP shift or any other empirical correction to identify PZC of TiO2P25. We believe that this
noteworthy achievement will attract professional interest.
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2.1.3. Evaluation of Titration Results: Numerical Fitting

The need to fit surface protolytic equilibria has led to the application of increas-
ingly complex theoretical approaches in surface complexation models (diffuse double-,
triple-, and four layer models) [16,30,40–44] and to the introduction of surface site het-
erogeneity parameters. While the smearing effect of the electrostatic field formed during
surface protolytic processes is fundamental, the heterogeneity of proton binding sites
at the oxide/solution interface has been studied both theoretically [45–47] and experi-
mentally [42,43,48–50]. Notably, surface complexation modeling has recently been used,
for example, to determine quantitative equilibrium reaction constants for nucleic acid
adsorption on titanium oxide surfaces [51].

When evaluating experimental data from the acid-base titration of amphoteric solid
materials, it is important to consider that other acid- and base-consuming reactions (e.g.,
impurities, dissolution of solid at low or high pH values) can occur in parallel with surface-
charging processes, and these reactions cannot be separated experimentally.

The potentiometric acid-base titration data for the washed and 400 ◦C heat treated
titania samples were fitted using the data-fitting program FITEQL [52]. FITEQL optimizes
the chemical equilibrium constants and selected parameters to minimize the difference func-
tion between the experimental and calculated values obtained from the multi-component
chemical equilibrium. To define the chemical equilibrium protonation and deprotonation
reactions of the titania surface Equations (1) and (2) were used. Additionally, to account
for the base consuming impurity, the hydrolysis of TiCl4 Equation (19) was incorporated
into the equilibrium definition. Surface complexation models are also integrated into the
program to account for interactions at charged interfaces. The choice between different
surface complexation models—such as the constant capacitance (CC), diffuse layer (DL),
Stern, and triple layer (TL) models—is optional. The experimental data from the forward
titration in indifferent electrolyte (KNO3) solutions was well fitted using any of these
surface complexation models. The experimental data and fit of the FITEQL optimization
procedure using the CC and DL models are compared in Figures 4 and 5.
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The optimized intrinsic equilibrium constants and model parameters used for surface
charging reactions (1) and (2), which occur on the surface hydroxyl groups of titania in
different electrolyte solutions, are summarized in Tables 1 and 2. Total concentration of
surface sites can be treated as adjustable model parameters within reasonable limits, as can the
capacitance values for the electric double layer [44]. In the FITEQL optimization procedure,
the intrinsic equilibrium constants of the protonation and deprotonation reactions and the
total concentration of ≡Ti-OH surface sites were fitted. Capacitance values were adjusted
to achieve the best fit, ensuring reasonable values for T(≡Ti-OH) and log K. The chemical
equilibrium of the surface protolytic reactions was calculated at each ionic strength (0.005,
0.05, 0.5 M KNO3) using the fitted parameters. The goodness of fit, expressed as WSOS/DF
(weighted sum of squares/degrees of freedom), was reasonably good, with values below
20 [52]. The absolute values for intrinsic equilibrium constants (log Ka1

int, log Ka2
int) increased

with increasing electrolyte concentration. At a given pH, the concentration of charged surface
sites was higher at higher electrolyte concentration, indicating a stronger charge screening
effect from the indifferent electrolyte. For the experimental data of the 400◦C heat-treated
titania, the total concentration of TiCl4 was fixed at the overall best-fit value of 4.18 × 10−4 M
(~0.02 mmol/g) to account for the base consuming impurity. This value is very similar to
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that obtained from TOX measurements, as shown in Figure 1. The equilibrium constants and
pHPZC values obtained from the fit are consistent with those reported in the literature for P25
and other forms of TiO2 [53–56]. The fitted total concentration of surface sites varied within
a reasonable range for titanium dioxide (2.7–13 sites/nm2) [17]. The fitted log K values for
the protonation reaction of the heat-treated (4.42–4.67) and washed sample (4.47–4.57) were
nearly identical, as were the values obtained for the deprotonation reaction. Surface charge
titrations provide more detailed information than the advanced methods such as polarimetric
angle-resolved second harmonic scattering, which only estimate pKa (= −log Ka) and PZC
values by detecting changes in the orientation of water molecule at the TiO2 interface as a
function of pH [7]. The range of optimal capacitance values of the CCM fit for both samples
was also very similar (0.8–0.95 F/m2 for the heat-treated sample and 0.76–0.94 F/m2 for the
washed samples). The CCM fitting parameters (76–94 µF/cm2) for TiO2P25, a mixture of
non-porous anatase, rutile, and amorphous phases (in a 78:14:8 ratio, with mean particle
size of 21 nm) are well aligned with experimental data from the literature. For example,
surface-normalized capacitance values of 120, 110 and 130 µF/cm2 were reported for anatase
nanoparticles with sizes of 7, 10 and 30 nm, respectively by Wang et al. [57]. It should be
noted that much higher higher capacity values (e.g., 239–134 mF/cm2 for nanotubes) have
been reported in recent literature [58]. We can conclude that experimental results from oxide
titration using accurate proton analytics [20] can be successfully fitted by surface complexation
models, even when the sample contains acid impurity, which can be treated as additive base
consuming component. The results show that experimental data for the heat-treated sample
containing acidic impurities can also be fitted, if the equilibrium is appropriately described.

Table 1. Intrinsic equilibrium constants and fitting parameters for charge formation reactions
(Equations (1) and (2)) occurring on the surface hydroxyl groups of titanium oxide P25 treated at
400 ◦C in electrolyte solutions.

Electrolyte, KNO3

0.005 M 0.05 M 0.5 M Average

Constant Capacitance Model (CCM)
log Ka1

int(≡Ti-OH2
+) 4.42 4.55 4.67 4.55 ± 0.12

log Ka2
int(≡Ti-O−) −8.25 −8.55 −8.51 −8.44 ± 0.16

pHPZC 6.34 6.55 6.59 6.49 ± 0.14
T (≡Ti-OH)/M 0.003 0.012 0.045
T (impurity)fixed/M 0.000418 0.000418 0.000418
C1/F m−2 0.80 0.89 0.95
WSOS/DF 4.76 8.62 6.06
Diffuse Layer Model (DLM)
log Ka1

int(≡Ti-OH2
+) 5.25 5.72 6.45 5.80 ± 0.61

log Ka2
int(≡Ti-O−) −7.44 −7.39 −6.74 −7.19 ± 0.39

pHPZC 6.34 6.55 6.60 6.50 ± 0.13
T (≡Ti-OH)/M 0.001 0.003 0.003
T (impurity)fixed/M 0.000418 0.000418 0.000418
WSOS/DF 2.00 5.33 6.23

The model parameters obtained from the CCM fit of the data for washed titania were
used to simulate the calorimetric titration. This made it possible to attribute the measured
heat evolution to specific surface reactions [29].
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Table 2. Intrinsic equilibrium constants and fitting parameters for charge formation reactions
(Equations (1) and (2)) occurring on the surface hydroxyl groups of titanium oxide P25 washed
in electrolyte solutions.

Electrolyte, KNO3

0.005 M 0.05 M 0.5 M Average

Constant Capacitance Model (CCM)
log Ka1

int(≡Ti-OH2
+) 4.47 4.57 4.53 4.52 ± 0.05

log Ka2
int(≡Ti-O−) −8.38 −8.35 −8.48 −8.4 ± 0.07

pHPZC 6.43 6.46 6.51 6.46 ± 0.04
T (≡Ti-OH)/M 0.0034 0.0120 0.0318
T (impurity)fixed/M 0 0 0
C1/F m−2 0.76 0.80 0.94
WSOS/DF 13.90 12.70 3.91
Diffuse Layer Model (DLM)
log Ka1

int(≡Ti-OH2
+) 5.25 5.86 5.99 5.70 ± 0.39

log Ka2
int(≡Ti-O−) −7.60 −7.06 −7.02 −7.22 ± 0.32

pHPZC 6.42 6.46 6.51 6.46 ± 0.04
T (≡Ti-OH)/M 0.0014 0.0020 0.0028
T (impurity)fixed/M 0 0 0
WSOS/DF 7.57 10.58 4.49

2.2. Thermodynamic Characterization of Surface Charge Formation on Titania Nanoparticles
2.2.1. Calorimetric Titration

During the titrations of TiO2 suspensions and blank electrolyte solutions with standard
acid and base titrants, the heat flow was measured in the titration cell of the TAM calorime-
ter. The calorimeter signal peaks were used to calculate the gross amount of released or
consumed heat. The heat of titration in each step was plotted as a function of the number
of steps for both the acidic and alkaline series at each ionic strength, as shown in Figure 6.
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Measured heat during the blank titration was not negligible, so the heat of the suspen-
sion titration was corrected at each step using the corresponding blank heat value. Our
observations indicate that the heats for suspension titrations are exothermic, while the
corresponding blank titrations show practically zero heat flow. The exception occurs at the
highest ionic strength (0.5 M KNO3), where the suspension titration heat is endothermic.
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However, since the blank titration is even more endothermic, the corrected value after
accounting for the blank data remains exothermic.

By correcting with the blank titration, the heat of mixing from Equation (21) was also
subtracted. However, the cumulative heat vs. amount of added reactant (acid or base)
functions were linear only for the first three steps; after that, they curved to a smaller slope.
This indicated that the exact extent of the surface reactions of titania needed to be accounted for.

2.2.2. Evaluation of Titration Results: Simulation of Extent of Reactions in Calorimetric Cell

A reliable model must be applied to calculate the extent of the surface reaction caused
by the added amount of reactant. To calculate the enthalpy changes related to the extent of
the surface reactions, we calculated the amount of charged surface species formed during
the calorimetric titrations at all ionic strengths using the previously applied CCM surface
complexation model.

The reference state of the aqueous TiO2 suspension (25 ◦C, pH set at the PZC of the
suspension, and the presence of an indifferent 1:1 electrolyte) was fixed as the starting
point. Titration with acid and base solutions was simulated using the CC model parameters
obtained for the washed titania (Table 2). The equilibrium concentration of the correspond-
ing species at each simulated step was calculated by the program FITEQL. The amount of
charged surface species formed in the H+ and OH− association reactions

≡Ti-OH + H+ ⇔ ≡Ti-OH2
+ log K1

int (16)

≡Ti-OH + OH−⇔ ≡Ti-O− + H2O log K2
int (17)

in each titration step (addition of 2.5 µmol H+/OH−) was calculated at different concen-
trations of 1:1 electrolyte using the CCM without optimization. The model parameters
were taken from Table 2. The equilibrium concentration of H+ ions was calculated, with
the corresponding acidic end pH values being 2.72, 2.79, and 2.88, and the alkaline end
pH values being 11.04, 10.86, and 10.64 in 0.005, 0.05, and 0.5 M indifferent electrolyte,
respectively. These were compared to the final pH values measured at the end of calorimet-
ric experiments. The measured pH values at the end of acid titration were 2.57, 2.59, and
2.62, and for the base titration were 11.73, 11.99, and 11.89 in 0.005, 0.05, and 0.5 M KNO3

electrolyte, respectively. We used the equilibrium speciation of surface species calculated
for the subsequent steps of titration in the evaluation of the calorimetric data. Due to the
deviation between the measured and calculated end pH values on the alkaline side the
data from CCM model simulation above pH = 10.5 were not used.

Reaction (1) is actually the surface protonation process; however, the OH− associ-
ation reaction Equation (17) is different from the surface deprotonation reaction given
in Equation (2) (≡Ti-OH ⇔ ≡Ti-O− + H+) because Equation (17) involves the formation
of water:

H+ + OH− ⇔ H2O ∆H0 = −56.5 kJ/mol (18)

Therefore, the heat of water formation in each step must be subtracted from the
measured heat of titration with base solution if we wish to identify the reaction heat of
surface deprotonation reaction of Equation (2), i.e., the negative charge formation on the
oxide surface.

The cumulative heat of surface protonation and deprotonation reactions (calculated
with correction for water formation) during titration was plotted as a function of the calcu-
lated amount of surface charges formed in reactions (1) and (17) (Figure 7). The plots of
experimental data (Figure 7) show a satisfactory linear relationship for both the protonation
and deprotonation reactions on the surface sites of titania. The linearity indicates that the
molar enthalpy changes of surface charging reactions (∆Hdepr and ∆Hpr) are independent
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of surface charge density within experimental accuracy, i.e., the temperature congruence
given in Equation (15) is valid under the present experimental conditions. The occurrence
of temperature congruence implies that there is no significant specific adsorption of sup-
porting electrolyte ions, there is only one type of surface group (or the contribution of
different types is equal at any pH value), and the interaction between neighboring surface
groups is not influenced by the protonation or deprotonation of either [28]. Thus, the slope
of the cumulative heat of surface charge formation vs. the amount of charged sites function
in Figure 7 can be identified with the partial molar enthalpies of surface protonation and
deprotonation reactions (∆Hpr and ∆Hdepr). The calculated values are summarized in
Table 3.
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Table 3. Partial molar enthalpy values of the surface protolytic reactions in indifferent electrolyte
solutions of TiO2 P25 at 25 ◦C.

Surface Reaction
≡Ti-OH+H+ ⇔ ≡Ti-OH2

+ ≡Ti-OH ⇔ ≡Ti-O− + H+ ≡Ti-OH1/2− + H+ ⇔
≡Ti-OH2

1/2+

Exothermic Endothermic Exothermic
cKNO3 (M) ∆Hpr (kJ/mol) ∆Hdepr (kJ/mol) (∆Hpr − ∆Hdepr)/2 (kJ/mol)

0.005 −17.47 32.53 −25.00
0.05 −17.05 30.98 −24.01
0.5 −16.10 27.08 −21.59

average −23.54 ± 1.75

With increasing concentration of indifferent electrolyte, the partial molar enthalpy
values of the 2-pK surface protonation and deprotonation reactions are given in Table 3.
Applying Hess’s law, as previously discussed, the enthalpy for the 1-pK protonation reac-
tion can be calculated using Equation (4). Partial molar enthalpies for the 2-pK and 1-pK
reactions are summarized in Table 3. One of the surface charging models of oxides is the am-
photeric site concept (2-pK concept), which involves protonation/deprotonation reactions
of surface hydroxide groups as written in the first two reactions (Equations (1) and (2)).
The other is the coordination concept (1-pK concept) which assumes protonation of only
one kind of surface site, given in the resulting equation. We found that the calculated, 1-pK
protonation enthalpy value −23.54 ± 1.75 kJ/mol is in good agreement with the standard
reaction enthalpy provided by Kallay et al. [21] for TiO2 P25. The previously mentioned
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work gave molar enthalpy values of 50 kJ/mol and 55 ± 5 kJ/mol for the reaction in
Equation (13) (temperature dependence of pHPZC and symmetric calorimetry measure-
ment, respectively), which should be divided by 2 to be conform with the 1-pK protonation
reaction (4). The general values for metal oxides range between –20 and –50 kJ/mol [59].
We believe that our calorimetric results contribute to addressing and resolving the funda-
mental debate regarding 1-pK and 2-pK approaches of the protolytic reactions at electrified
interface of TiO2.

Molar enthalpy values found in other sources also comply well with our present results
(Table 3). The reversible proton adsorption and desorption enthalpy values determined for
rutile by Machesky and Anderson [23] are ±14.7 and ±30.0 kJ/mol, respectively. De Keizer
et al. [34] reported molar enthalpy values of −22 and −32 kJ/mol (when corrected for
the neutralization reaction: 24.5 kJ/mol) for the same processes, respectively. Kallay and
Ćop [60] also presented a theoretical work where numerical fitting of a model metal-oxide
with the parameters (∆Hpr = −15 kJ/mol ∆Hdepr = 30 kJ/mol pHPZC = 6.56) very similar
to our sample was used.

The work of Rodriguez-Santiago et al. [22] presented standard enthalpies for the
1-pK protonation reaction. By assuming constant values for heat capacity and entropy
change in Equation (12) it is possible to determine the standard protonation enthalpy
knowing only the pHPZC of the sample. They used constant values of ∆S = 25.5 J/mol
K and ∆Cp = 87 J/mol K to calculate standard protonation enthalpies for titania data
from literature [25,26]. The enthalpies in the latter work for standard state, determined by
thermodynamic approach of the 1-pK model and the combination of crystal chemical and
solvation theory, were −23.2 and −24.7 kJ/mol, respectively, for experimental data of rutile.
Kallay et al. [21] applied Equation (14) and ∆S = −85 J/mol K to calculate the enthalpy for
titania P25 and compared it with the result obtained from their symmetrical calorimetry
experiment. We used the data available in the above articles and their referenced works and
compared them with our results presented here for titania, as well as previously published
data for alumina [29]. Standard enthalpies for the 1-pK protonation reaction of metal oxides
are plotted against their pHPZC values in Figure 8. To compare the experimental values
with the theoretical predictions of Equations (10) and (14), the straight lines corresponding
to these equations are also plotted in Figure 8.
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We calculated the standard enthalpy of the 1-pK protonation for our purified titania us-
ing the pHPZC (6.46). By applying Equation (10) with the entropy value ∆S = 25.5 J/mol K,
the resulting enthalpy was approximately −29 kJ/mol. However, when Equation (14) was
used with ∆S = −85 J/mol K, and the enthalpy value was converted to the 1-pK protonation
reaction enthalpy, we obtained a value of around −24 kJ/mol. Interestingly, the experi-
mental values for surface protonation enthalpy of rutile (open triangle and square) and
titania P25 (black triangle and square) are nearly identical, with the only difference being
their pHPZC values. The experimental value for rutile (black diamond), as determined
by Machesky and Anderson [23], falls between these points. The change in entropy, as
chosen by Kallay et al. [24,27] in Equation (13) also seems appropriate, particularly when
comparing the protonation enthalpy of alumina determined previously by IT calorimetry
(Figure 8). Although the two theoretical lines in Figure 8 show a non-negligible difference,
this difference becomes insignificant when considering the experimental error associated
with calorimetric experiments. The thermodynamic parameters obtained pertain to the
reactions occurring at ≡Ti-OH sites on an electrified interface and, therefore, should be
generalizable to any TiO2 surface. Recent simulations have shown that the surface chem-
istry of TiO2 in aqueous environment depends on various factors beyond pH, such as the
crystal structure and the morphology of the TiO2 particles [11]. Consequently, different
equilibrium constants for protonation and deprotonation, point of zero charge values,
pH-dependent speciation of charged and adsorbed species, and the pH windows for their
existence have been calculated using ab initio molecular dynamics with a grand canonical
formulation for different crystal faces of rutile and anatase particles. While our calorimetric
measurements were performed under ultrapure conditions, the results are broadly applica-
ble to other conditions, provided that the rule of thermodynamics are followed. Our data
can, for instance, be integrated into equilibrium specification models where environmental
conditions are also considered.

3. Materials and Methods
3.1. Materials

The chemicals used in this study, including KOH, KNO3, HNO3 solutions and standard
buffer solutions, were analytical reagent grade and were sourced from Merck except for
the titanium dioxide P25 powder. The latter was a highly dispersed commercial product
from Degussa AG. This fine TiO2 powder is produced through the flame hydrolysis of
TiCl4 resulting in a mixture of anatase, rutile and amorphous phases with the phase
composition determined to be 78% anatase, 14% rutile, and 8% amorphous, as reported
by [61]. According to the technical data sheet from Evonik-Degussa AG, the product has
a specific surface area of 50 m2/g, a mean particle size of 21 nm, and an HCl content less
than 0.3% [37]. Millipore MilliQ water was used in all experiments to ensure ultrapure
conditions. It is assumed that the HCl content in the TiO2 P25 originates from residual, non-
hydrolyzed TiCl4. Under appropriate condition, the hydrolysis of TiCl4 occurs according to
the following reaction:

TiCl4 + 2H2O ⇔ TiO2 + 4H+ + 4Cl− (19)

This reaction generates TiO2 along with hydrochloric acid (HCl), which contributes to
the residual acid impurity present in the commercial product.

To eliminate chlorine contamination from the powder TiO2 P25 samples, two ap-
proaches were employed: heat treatment and extensive washing. In the first approach, the
samples were heated in an oven at 400 or 600 ◦C for 6 h in air, without the need for an
inert atmosphere like nitrogen (N2) or argon (Ar). In the second approach, the purification
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of the titania powder was carried out by exhaustive washing in Millipore MilliQ water.
To enhance the hydrolysis of any remaining TiCl4 impurity, the pH of suspensions was
initially raised to 10. The alkaline suspension was stirred for half an hour to promote
hydrolysis. Afterward, the pH was reduced to approximately 6 to facilitate the washing
process. This washing procedure was repeated three times, using ample MilliQ water, with
the supernatant being separated by centrifugation after each wash. The effectiveness of the
purification was monitored using TOX analysis and potentiometric measurements, which
helped to ensure the successful removal of chlorine-containing impurities.

3.2. Methods
3.2.1. TOX Determination

A coulometric analyzer (Euroglas TOC 1200) was used to measure the chlorine content
of samples as total organic halides (TOX). After pretreatment, the samples were oxidized
at high temperatures in a combustion furnace. During this process, combustion gases,
carrying halide ions, were released and led into the titration cell, where a coulometric
titration took place using silver ions (Ag+). The total halogen was calculated from the
precipitated amount of AgX. TOX was determined for our original and purified samples of
TiO2 P25.

Oxidation : R − X + O2 → HX + CO2 + H2O
Titration : HX + Ag+ → H+ + AgX

(20)

3.2.2. Potentiometric Titration

Acid-base titration was used to determine the pH-dependent surface charge state
in a CO2-free atmosphere. We used different concentrations of background KNO3 elec-
trolyte to maintain the constant ionic strength at 0.005, 0.05, and 0.5 M. Solid samples
were equilibrated with the electrolyte solution for an hour, with gentle magnetic stirring
under a continuous stream of purified, wet nitrogen. After this sample pretreatment, the
equilibrium titration was performed using a unique self-developed system (GIMET1) with
665 Dosimat (Metrohm) burettes, nitrogen bubbling, magnetic stirrer, and high-performance
potentiometer. The whole system (mV-measure, stirring, bubbling, amount and frequency
of titrant) was controlled by IBM PS/1 computer using AUTOTITR software. To check
Nernstian response, a Radelkis OP-0808P (Hungary) combination pH electrode was cali-
brated for three buffer solutions. Using the data from the reference solution titration (blank),
the hydrogen ion activity vs. concentration relationship was determined so that the elec-
trode output could be converted directly to hydrogen ion concentration instead of activity.
To reach a starting pH of about 3, a calculated amount of standard HNO3 solution was
added to the titania suspensions (50 mL, 20 g/L) equilibrated with electrolyte. To provide a
CO2-free environment the suspensions were purged with nitrogen for 20 min. After the
pre-purge phase, the samples were titrated by standard KOH solution up to pH 10, and
then by standard acid solution down to pH 3. To control the addition of a new titrant dose,
a criterion for the change of pH with time (∆pH/∆t) was introduced. After addition of
each titrant portion, a sampling cycle (stirring, waiting, and measuring pH) was repeated at
least three times. To maintain a steady increment in pH, the amount of subsequent portions
is estimated from the last three measured points. Optimal parameters for equilibrium
titration were as follows: the criterion for pH settling is 0.0002 pH/s; the sampling cycle is
15 s; the desirable change in pH is 0.3. Intervals between adding titrant doses were 2–5 min
and the amount of added portions was 0.05–0.1 mL. The duration of forward and backward
runs (titration with base and acid titrant, respectively) altogether was about 85 min. The net
proton surface excess amount (∆nσ

H+,OH−, mol/g) is the difference of H+ and OH− surface
excess amounts (nσ

H+, nσ
OH−) related to unit mass of solid (∆nσ

H+,OH−= nσ
H+ − nσ

OH−).
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The surface excess amount defined for adsorption [62] can be determined directly from the
initial (ci

0, mol/L) and equilibrium (ci
e, mol/L) concentration of a given solute (nσ

i = (ci
0

− ci
e)V/m, where V is the volume (L) of liquid phase and m is the mass of adsorbent) in a

dilute solution. The values nσ
H+ and nσ

OH− were calculated at each point of titration using
the actual activity coefficient from the slope of H+/OH− activity vs. concentration straight
lines for background electrolyte titration.

3.2.3. Calorimetric Titration

To determine the heat effects of the acid-base titration of titania samples an isothermal
microcalorimeter (TAM 2277, thermal activity monitor, Thermometric) was used at 25 ◦C.
Only the washed TiO2 P25 sample was tested in the calorimetric experiments to eliminate
uncontrolled acid-base reactions with significant heat effects. The samples contained 0.2 g
titania powder dispersed in 10 mL electrolyte solution (0.005, 0.05, and 0.5 M KNO3,
respectively) and were purged with argon to eliminate dissolved CO2 impurities. The
suspensions were titrated separately with the portions of standard acid or base solutions
under a CO2-free argon atmosphere. Blank titrations were also performed at the same
concentrations of indifferent electrolyte KNO3 in the absence of the titania adsorbent. The
heat flow across the titration cell of TAM was continuously recorded. The accuracy of
the measured reaction heat data was tested by measuring the standard heat of reaction
between THAM ((HO-CH2)3-C-NH2) and HCl (∆H = −55 ± 1 kJ/mol). The combination
of simultaneous chemical reactions and mixing processes yielded the overall heat flow
(Qmeas) in the calorimeter cell:

Qmeas = Qri + Qmix = ∑i ∆Hri∆ξi + Qmix (21)

where ∆Hri is the enthalpy change of reaction i, ∆ξi is the change of the extent of reaction
i and Qmix is the mixing heat of titrant’s portion. Considering acid-base titration, the
following reactions can be accounted for: reactions with added acid (∆Ha), reactions with
added base (∆Hb) and water formation (neutralization) reaction (∆Hn). Blank experiments
were used to determine heat of mixing.

4. Conclusions
The pH and ionic strength-dependent surface charging of titanium oxide can be

quantitatively characterized by potentiometric titration with acid or base in the presence
of electrolytes. This method is sensitive to any acid/base-consuming processes other
than surface protolytic reactions. Therefore, titration should be performed in a pH range
where dissolution of oxide is negligible, and the sample should be purified from any
acidic or alkaline contaminants. The acidic impurity of TiO2 P25 sample can be effectively
removed by alkaline, then acidic treatments, and finally washing. Heat treatment at 400
and 600 ◦C, however, proved inefficient. Due to the anatase-to-rutile phase transition likely
occurring at 600 ◦C, the active site density on the titania surface decreased after heating,
potentially influencing the photocatalytic activity of titania, which is often calcined at
elevated temperatures. This reduction in active sites may negatively affect the efficiency of
photocatalytic reactions.

We conclude that it is essential to focus on: (i) precise work involving both the pH
and the concentration calibration, allowing for concentration-based calculation, which is
a prerequisite for obtaining correct values, (ii) the importance of purified materials (UP
water, Cl-free TiO2, CO2-free titrants and conditions), and (iii) the limitations, such as the
dissolution-free pH range of solid. These aspects are even more crucial during calorimetric
titrations. The experimental data of heat-treated and washed samples were fitted using
FITEQL software and applying the CC and DL models for the 2-pK surface protonation and
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deprotonation reactions. The fitting results were reasonable and consistent with literature
data. Furthermore, the capacitance values calculated as fitting parameters of the CC model
harmonized surprisingly well with experimental capacitances of TiO2 nanoparticles in
the literature. An interesting observation is that SCM fitting from titration data based on
accurate proton analytics resulted in correct surface charging parameters, even though the
sample contained acid impurity. The quantitative characterization of surface charging for
TiO2 P25 provides correct data for further modeling, such as photocatalytic reactions or ad-
sorption of biomolecules at oxide/water interface, making our data useful for interpreting
results obtained with P25 and for thermodynamic models. Using the CC model parameters,
we simulated the protolytic reactions taking place in the calorimetric cell during acid-base
titration steps. The derived enthalpies for the 2-pK surface charging reactions of titania
were opposite in sign. We also confirmed that the partial molar enthalpies of these two
surface reactions show weak ionic strength dependence, similar to findings for alumina [29].
This supports the theoretical prediction of Hall [28], who expected a systematic but neg-
ligible effect from the charge screening of electrolytes. By applying the thermochemical
considerations of Hess’s law to our results for the 2-pK surface reactions, we derived
enthalpies for the 1-pK model of surface protonation. Consistent application of thermo-
chemical rules revealed that the seemingly contradictory results in literature arise from the
formal difference between the reaction in the calorimetric cell and its interpretation. We
found that the differences in reported molar enthalpies [21–23,34] are primarily due to the
different experimental approaches and interpretations of the investigated surface charging
reactions, aside from experimental error. The contradiction between positive and negative
enthalpy values can also be resolved if the 1-pK protonation reaction in Equation (4) is used
as the basis. In doing so, the enthalpies from the above works align well with each other
and with the results of the present work. In conclusion, the thermodynamic parameters of
titania from different sources are consistent within the experimental error of the applied
methods. This study resolves a fundamental debate about the 1-pK and 2-pK approaches of
the protolytic reactions at electrified interface of TiO2. The thermodynamic characterization
of surface charging for TiO2 P25 in this work provides accurate data for thermodynamic
databases, which is a key outcome.
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