001038895 001__ 1038895
001038895 005__ 20250310131235.0
001038895 0247_ $$2doi$$a10.1038/s41467-024-44773-7
001038895 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01706
001038895 0247_ $$2pmid$$a38228602
001038895 0247_ $$2WOS$$aWOS:001147728500002
001038895 037__ $$aFZJ-2025-01706
001038895 082__ $$a500
001038895 1001_ $$00000-0003-3608-8369$$aTossoun, Bassem$$b0
001038895 245__ $$aHigh-speed and energy-efficient non-volatile silicon photonic memory based on heterogeneously integrated memresonator
001038895 260__ $$a[London]$$bSpringer Nature$$c2024
001038895 3367_ $$2DRIVER$$aarticle
001038895 3367_ $$2DataCite$$aOutput Types/Journal article
001038895 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738850373_13173
001038895 3367_ $$2BibTeX$$aARTICLE
001038895 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038895 3367_ $$00$$2EndNote$$aJournal Article
001038895 520__ $$aRecently, interest in programmable photonics integrated circuits has grown as a potential hardware framework for deep neural networks, quantum computing, and field programmable arrays (FPGAs). However, these circuits are constrained by the limited tuning speed and large power consumption of the phase shifters used. In this paper, we introduce the memresonator, a metal-oxide memristor heterogeneously integrated with a microring resonator, as a non-volatile silicon photonic phase shifter. These devices are capable of retention times of 12 hours, switching voltages lower than 5 V, and an endurance of 1000 switching cycles. Also, these memresonators have been switched using 300 ps long voltage pulses with a record low switching energy of 0.15 pJ. Furthermore, these memresonators are fabricated on a heterogeneous III-V-on-Si platform capable of integrating a rich family of active and passive optoelectronic devices directly on-chip to enable in-memory photonic computing and further advance the scalability of integrated photonic processors.
001038895 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001038895 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038895 7001_ $$00000-0003-1366-0115$$aLiang, Di$$b1
001038895 7001_ $$00000-0002-4886-0013$$aCheung, Stanley$$b2
001038895 7001_ $$0P:(DE-HGF)0$$aFang, Zhuoran$$b3
001038895 7001_ $$0P:(DE-HGF)0$$aSheng, Xia$$b4
001038895 7001_ $$0P:(DE-Juel1)188145$$aStrachan, John Paul$$b5
001038895 7001_ $$0P:(DE-HGF)0$$aBeausoleil, Raymond G.$$b6
001038895 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-44773-7$$gVol. 15, no. 1, p. 551$$n1$$p551$$tNature Communications$$v15$$x2041-1723$$y2024
001038895 8564_ $$uhttps://www.nature.com/articles/s41467-024-44773-7
001038895 8564_ $$uhttps://juser.fz-juelich.de/record/1038895/files/s41467-024-44773-7.pdf$$yOpenAccess
001038895 909CO $$ooai:juser.fz-juelich.de:1038895$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188145$$aForschungszentrum Jülich$$b5$$kFZJ
001038895 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001038895 9141_ $$y2024
001038895 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038895 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
001038895 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
001038895 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001038895 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001038895 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
001038895 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001038895 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001038895 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001038895 980__ $$ajournal
001038895 980__ $$aVDB
001038895 980__ $$aUNRESTRICTED
001038895 980__ $$aI:(DE-Juel1)PGI-14-20210412
001038895 9801_ $$aFullTexts