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High-speed and energy-efficient non-volatile
silicon photonic memory based on
heterogeneously integrated memresonator

Bassem Tossoun 1 , Di Liang 1,2, Stanley Cheung 1, Zhuoran Fang1,
Xia Sheng1, John Paul Strachan 1,3 & Raymond G. Beausoleil1

Recently, interest in programmable photonics integrated circuits has grown as
a potential hardware framework for deep neural networks, quantum com-
puting, and field programmable arrays (FPGAs). However, these circuits are
constrained by the limited tuning speed and large power consumption of the
phase shifters used. In this paper, we introduce the memresonator, a metal-
oxide memristor heterogeneously integrated with a microring resonator, as a
non-volatile silicon photonic phase shifter. These devices are capable of
retention times of 12 hours, switching voltages lower than 5 V, and an endur-
ance of 1000 switching cycles. Also, thesememresonators have been switched
using 300 ps long voltage pulses with a record low switching energy of 0.15 pJ.
Furthermore, these memresonators are fabricated on a heterogeneous III-V-
on-Si platform capable of integrating a rich family of active and passive
optoelectronic devices directly on-chip to enable in-memory photonic com-
puting and further advance the scalability of integrated photonic processors.

Over recent years, the demand for high-performance computers (HPCs)
capable of efficiently running artificial intelligence applications has
grown dramatically. The number of programs which use deep learning
training has doubled every 3.5 months, which is much faster than the
rate of performance doubling predicted by Moore’s law1. In addition,
learning algorithms are required to be executed in real-time on a
massive amount of data produced by the plethora of interconnected
smart devices within the Internet of Things (IoT) and edge computing.

Today, AI algorithms utilized by applications such as autonomous
driving vehicles and Amazon’s Alexa, are implemented using neural
networks (NNs), a model inspired by the neuro-synaptic network
within the human brain, which is the most energy-efficient computer-
to-human knowledge (able to process 10 petaflops of data with only
20W of power)2. The most commonly used hardware for running NNs
includes application-specific integrated circuits (ASICs), graphics
processing units (GPUs), and field-programmable gate arrays (FPGAs).
Current state-of-the-art electronic accelerators consume about 0.5 pJ
in processing a single multiply-accumulate (MAC) operation, the most
fundamental neural network calculation3.

While conventional microelectronic processor performance pro-
gressed in line with Moore’s Law as transistor density increased and
multi-core processors developed, they are still fundamentally limited
in both speed andpower. Joule heating and the charging ofmetalwires
involved in the movement of data constrain the operating speed and
dominate the power consumption within electronic neural network
hardware4. To exacerbate this issue even further, the von Neumann
bottleneck and the “memory wall” restrict the bandwidth of data
communications between the processor and the memory. Further-
more, digital processing units are also bottlenecked by the clock rate
of the processor when computing multiply-accumulate (MAC) opera-
tions, the most fundamental neural network calculation5.

Fortunately, several technologicalbreakthroughsover the last few
decades have opened novel opportunities to battle these challenges.
Silicon photonics offers a promising solution to dramatically improve
the bandwidth and energy efficiency of interconnects for data com-
munications applications including data centers and HPCs6. Most
recently, silicon photonics has not only been used for data commu-
nications, but for non-vonNeumann accelerators used for applications
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such as deep learning7–12. Some of the inherent properties of photonics
make it a suitable platform for neuromorphic computing such as its
high bandwidth of data transmission andparallel operation enabled by
unique multiplexing schemes like wavelength division multiplexing
(WDM). Furthermore, the processing time scale of a photonic neuron
is within picoseconds,which is orders ofmagnitude higher than that of
its electronic counterparts13.

Because running a task on a deep neural network often can take a
significant amount of time, there is a significant benefit to having
nonvolatile memory on-chip as it eliminates the static power con-
sumption in holding weight values throughout an inference task. On-
chip memory also prevents the need to retrieve results stored on a
separatememory chip in between epochsor training steps. In addition,
nonvolatile photonic memory is not only useful for data storage but
also as part of the computational algorithms running on photonic
neuromorphic computers4. More specifically, high-speed and low-
power nonvolatile photonic phase shifters are essential in enabling a
larger variety of machine-learning methods to be executed on inte-
grated optical neural networks. For example, deep neural networks
utilizing online training with algorithms such as backpropagation
require synaptic weights to be updated frequently. These on-the-fly
learning algorithms are scalable, memory-efficient, and can even be
used to circumvent the losses compounded by the device imperfec-
tions within photonic neural networks as they scale in size and
complexity14,15.

One viable solution to supplying a fast, low-power, nonvolatile
memory is the memristor (also commonly referred to as resistive
random-access memory or RRAM) which was theoretically proposed
by Leon Chua and experimentally demonstrated by HP Labs16,17.
Memristors (also commonly referred to as resistive random-access
memory or RRAM) have proven to be excellent nonvolatile electronic
memory devices with high switching speed (∼100ps), low energy
switching (∼100 fJ), endurance (106−108 cycles), and high density5,18–22.

In thiswork,we integratedmetal–oxide-basedmemristive devices
within III–V/Si microring resonators to produce memresonators, an

energy-efficient analogue nonvolatilememory on a highly scalable and
versatile heterogeneous silicon photonic platform well-suited for
integrated photonic information processing circuits. By changing the
resistance state of thememristor, we can subsequently tune theoptical
phase within the waveguide and alter the resonant wavelength of the
device. Analogue device operation was shown through the measure-
ment of multiple optical states. Performance records, including
retention times of 12 h, an endurance of 1000 switching cycles,
switching times as low as 300ps for SET and 900ps for RESET, and
switching energies of 0.15 pJ for SET and 0.36 pJ for RESET, are
demonstrated.

By integrating these memristors on the same chip as photonic
neural networks, for example, significant amounts of energy and
latency can be saved by avoiding energy lost in the transfer of data
from the processor to an externalmemory chip.Moreover, using these
memresonators, weights within photonic neural networks can be
stored and updated at high speeds and low energy, enabling the use of
theback-propagation algorithmand the ability to train thenetwork on-
chip. Finally, this III–V-on-silicon photonic memristive device is based
on the same technology developed for a fully active (including optical
gain) and passive integrated photonic platform on silicon for large-
bandwidth, energy-efficient optical interconnect applications23. In fact,
the first generation of a heterogeneous III–V-on-silicon technology has
been successfully commercialized by Intel in their 300mm CMOS
production line to enable on-chip lasers for over 2 million optical
transceiver units each year24,25.

Results
Device design and fabrication
As schematically shown in Fig. 1a, heterogeneous III–V/Si microring
resonators (MRRs) of varying radii between 10 µm and 25 µm were
fabricated on a silicon-on-insulator (SOI) substrate with a 2 µm-thick
buried oxide layer and a 300 nm-thick top silicon layer. GaAs epitaxial
device layers are transferred to a 100mm Si-on-insulator (SOI) sub-
strate by an O2 plasma-assisted direct wafer bonding process26. About
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Fig. 1 | Device schematics and images. a 3D-view and cross-schematic view of a
memristive III–V-on-Silicon microring resonator. b Simulated fundamental TE
mode field intensity within the microring waveguide at 1310 nm. c Scanning

electron microscopy (SEM) cross-sectional image of memresonator.
d Transmission electron microscopy (TEM) cross-sectional image of memreso-
nator. e TEM image of a bonded GaAs-Al2O3-Si memristor.

Article https://doi.org/10.1038/s41467-024-44773-7

Nature Communications |          (2024) 15:551 2



10 nm of Al2O3 was grown on both the GaAs and Si substrates using
atomic layer deposition (ALD) before they were bonded together to
form the resistive-switching oxide. A n-GaAs/Al2O3/p-Si
semiconductor-insulator-semiconductor (SIS) stack is embedded
within the microring resonator for high-speed optical signal modula-
tion through carrier accumulation and the plasma dispersion effect27.
This device can then be resistively switched like a memristor, thereby
producing a memresonator, or a memristor integrated with a micror-
ing resonator, as will be discussed in further detail in the next section.

An air trench is then formed on the Si device layer with a ∼170 nm
waveguide rib etch depth, prior to wafer bonding in order to confine
the memristor device area only to the fundamental TE mode and to
minimize the area for high-speed and energy-efficient charging and
discharging. The bus and ring waveguides within the microring reso-
nators are 500 nm wide each and are separated by 200nm at the
coupling section. Figure 1b is an optical simulation showing the fun-
damental TEmodewithin thememresonatorwaveguide. Transmission
electronic microscopy (TEM) images of the fully fabricated memre-
sonator cross section and memristor material stack are shown in
Fig. 1d, e, respectively. As seen in Fig. 1a, electrodes are placed on the
150-nm-thick n-type GaAs contact layer and the 300 nm p-type Si
contact layer to apply an electrical field across the oxide material.
Since semiconductormaterials are sandwiching the resistive-switching
oxide, these memristors can be integrated within optical waveguides
while adding only about 0.05 dB of insertion loss (see Supplementary
Note 2), achieving much lower optical loss than with purely metal
electrodes typically used in electronic memristors.

Working mechanism
As mentioned in the previous section, a memristor is formed using
n-type GaAs and p-type Si sandwiching a thin resistive-switching Al2O3

layer. In order to resistively switch the memristor, a process creating
an interchange of oxygen and semiconductor atoms, called “electro-
forming,” must be induced by applying a high enough positive bias
voltage across the memristor. The high electric field breaks some of
the Al–O bonds causing oxygen atoms to migrate towards the semi-
conductor regions and leave behind negatively ionized vacancies
within the Al2O3 layer. The oxygen vacancies form localized aluminum-
rich channels, namely conductive filaments (CFs), that allow current to
flow and effectively increase the conductivity of the oxide material,
setting the device to a low resistance state (LRS)28. When a large
enough electric field is applied in the opposite direction, it causes a
reduction of oxygen vacancies as well as sufficient current flow to
catalyze localized Joule heating, rupturing the CFs previously formed
and resetting the memristor back to a high resistance state (HRS)29,30.
Prior studies suggest that a combination of electric field and Joule
heating induces the resistive-switching mechanism of Al2O3-based
memristors31. When a positive bias (typically lower than the voltage
needed for electroforming) is applied again, the CF reforms, and the
device switches back to a lower resistance.

As can be seen in Fig. 2a, a schematic of the resistive-switching
mechanism within the memristor is shown. Oxygen vacancies are
formed after electroforming, and they can be ruptured and recon-
nected through subsequent set and reset cycles. Figure 2b, c visually
portrays the carrier dynamics within the III–V/Si memristor-integrated
waveguide when the memristor is in the LRS and the HRS. Figure 2d
shows the current–voltage characteristics of the device which shows a
hysteresis-type curve confirming its operation as a memristor. The
voltage was swept from0 to 10V and back down to 0 V, and then from
0V to −5 V and back to 0 V to observe the hysteresis effect in the I–V
characteristics. The compliance current, ICC, was initially set to 50 µA in
the forward direction and 1mA in the reverse direction in order to
prevent the device from permanent breakdown and physical damage.
Typically, the device had less than 10 nA of DC leakage current in the
HRS state due to the high quality of the Al2O3 (Supplementary Note 3).

The leakage current is mostly due to trap-assisted tunneling through
deep-level traps within the Al2O3 layer. The electroforming step in the
memristor occurs at 9 V, the set voltage occurs at around 5 V, and the
reset voltage occurs around −4 V.

As canbe seen in the current–voltage characteristics in Fig. 2d, the
device can also be switched to an intermediate resistance state (IRS)
with a resistance between the LRS and HRS by adjusting the current
compliance of the measurement equipment to a value between the
compliance used for the HRS and LRS. The device can also be set to
multiple intermediate in this way, displaying the possibility of using
thesedevices for analogue computing. For example,while the device is
in the HRS, it can be switched to the IRS by applying a current com-
pliance and can be switched to a LRS by applying a higher current
compliance. Since a lower current compliance is applied, it physically
limits the growth of the conductive filament, thereby also limiting the
device resistance32. Moreover, when the memresonator is set to a low
or intermediate resistance state, we found that the conduction in the
memristor is observed to be diode-like, which resembles the ideal
diode equation, I ∝ [eqV − 1]. Since the resistive-switching oxide acts as
a non-degenerate semiconductor material, and each semiconductor
contact layer is p- and n-doped, the device essentially acts like a p–i-n
diode in which excess electrons flow from the n-type GaAs to the
p-type Si and excess holes flow in the opposite direction33. The device
begins behaving similarly to a carrier injection type modulator in
which majority carriers are injected into the CF and drift from one
contact region to the other through the CF. In Fig. 2c, a schematic
diagram of this process is shown, displaying electrons being injected
from the n-GaAs to the p-Si and holes being injected from the p-Si to
the n-GaAs through the CF while the memristor is in the LRS.

Device characteristics
As shown in Fig. 2e, switching thememresonator between the LRS, IRS,
and the HRS subsequently switches its resonance wavelength. The
insertion loss was measured to be about 0.047 dB in the HRS and
0.048 dB in the LRS (Supplementary Note 2). The 20-µm diameter
memresonator achieves about a 0.08 nm or about a 0.18π phase shift
(see Supplementary Note 5) in the LRS, leading to an estimated VπL of
2 V × 0.35mm=0.7mm. The effective refractive index and phase shift
as a functionof voltage is plotted in Supplementary Fig. 4. After setting
the memresonator to the IRS or LRS, the device resonates at the same
wavelength until it is reset back to the HRS. In Fig. 3b, e, the resistance
in the HRS, IRS, and LRS and the optical power being transmitted
through the memresonator at λHRS, λIRS, and λLRS was measured for
12 h. This measurement demonstrates the non-volatility of this
optoelectronic memory device. Drifting in the temperature stability of
the setup was observed, which can be mitigated using a temperature-
controlled stage. The device also demonstrated repeatability and
excellent endurance as it was cycled 1000 times between states using
voltage pulses (Fig. 3c). Figure 3f shows the resistance of the HRS, IRS,
and LRS, and demonstrates a stable HRS/LRS resistance ratio of about
103 through 1000 switching cycles.

To test the switching speed and energy of these devices, an
arbitrary waveform generator was used to generate voltage pulses
used for reading and writing the memresonator (see “Methods” for
experiment details). The output optical power at the resonant wave-
length of the memresonator was monitored as the device was being
switched (Fig. 4b, c). These measurements demonstrate the ability to
quickly write and read data from the device with ultralow energy. The
switching energy is as low as 0.15 pJ, which is more than 30× smaller
than the record switching energy for photonic nonvolatile memory
devices34. After the device was SET using a write voltage pulse, a read
voltage pulse was applied to read the optical power transmitted
through the memresonator at the resonant wavelength as well as the
read current of the memristor, which was 2.5 µA. The normalized
transmittedpower after thedevicewasSETwasabout0.27. The energy
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consumed to read the memresonator after the write cycle was
about 5 fJ.

Afterward, the device was RESET using an erase pulse, with a
switching energy of 0.36 pJ. Then a read voltage pulse was applied to
read the transmission power of the memresonator and the read cur-
rent of the memristor, which was around 1 nA. The normalized optical
power transmitted through the memresonator at the resonant wave-
length after the devicewas SETwas about 0.1. There is a small blueshift
in the resonant wavelength in the HRS when the read voltage is
applied, explaining why there is a small amount of power being
transmitted even after the device has been RESET. However, the
transmitted readpower is nearly 3× times smaller thanwhen the device
has been SET. Also, the energy consumption of reading the memre-
sonator after the erase cycle was about 2 aJ. Most importantly, zero
static power is consumed in between read andwrite cycles as energy is
only spent during the read and write operations.

Themeasured switching speed of these devices is over two orders
of magnitude faster than the fastest nonvolatile photonic phase shif-
ters and is comparable to all-electronic metal–insulator–metal (MIM)
memristor devices35,36. Furthermore, electronicmemristorsmade from
a similar material stack (Si/SiO2/Si) have previously shown a SET speed
of 7.6 µs and aRESET speedof 490 µs33. Ultimately, the switching speed

is limited by a few factors: the atomistic processes within the mem-
ristor stack, the time constant associated with Joule heating causing
the conductive filament to rupture, and parasitic capacitances37.

Discussion
Resistive-switching elements such as memristors have been used for
analogue computing for several years. While these electronic mem-
ristors can be integrated at high densities within crossbar arrays and
switched at high speeds, there exists a trade-off between bandwidth
and the total size of the crossbar array. For example, the bandwidth
scales inverse proportionally to the size of the crossbar array, meaning
that as the size reaches greater than 1mm2, the bandwidth becomes
constrained, and the energy cost for off-chip communications can also
become problematic. Whereas on a photonic platform, signals can be
supported with much greater bandwidth and consume less energy for
longer distances than the electrical counterparts. For instance, optical
waveguides can be designed with low signal attenuation (<0.1 dB/cm)
and are able to propagate high-power signals without the issues of
thermal runaway such as that seen in the Joule heating of electrical
wires38. Hence, microring-based weight banks and crossbar arrays
which perform matrix-vector multiplication operations used for pho-
tonic neural networks, as well as for optical content-addressable
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Fig. 2 | Illustration of device working mechanism and fundamental device
characteristics. a Schematic diagram of the process of forming and rupturing
conductive filaments (CFs) within the memristor. VSET is the voltage applied to set
thememristor to the IRSor LRS. VRESET is the voltage applied to reset thememristor
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diagram of the carrier distribution within the waveguide while a read voltage is
applied to the memristor in the IRS or LRS. d Current–voltage characteristic of the
device displaying the hysteresis signature of a memristor. Current compliances of
1 µA, 50 µA, and 100 µA were used in the forward bias voltage direction in order to
set the device into different resistance states. e Optical spectrum of the memre-
sonator while a 2 V read voltage is applied in different states.
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memory, can be fashioned out of this platform using these nonvolatile
photonic phase shifters9,39,40. Furthermore, these types of circuits can
potentially achieve larger scales withmuch higher efficiency than their
electronic counterparts.

Table 1 compares the characteristics for different implementa-
tions of phase shifters on silicon photonic platforms used for neural

networks and optical FPGAs. Typically, thermo-optic phase shifters are
used as weights within photonic neural networks, however, since they
lack high-speed programming capabilities and nonvolatile memory
capabilities, they waste tens of mWs per unit of static power over the
span of an inference task and with each weight update cycle. They can
also easily cause thermal crosstalk which limits integration density and
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Fig. 4 | Switching scheme and measured switching high-speed temporal
response of memresonator. a The typical voltage pulse sequence used to write
and erase data from a memristor. b Plotted is the normalized transmitted power
(left y axis) at the resonant wavelength of the memresonator as a function of time
during a voltage pulse sequence. The voltage of the input pulse sequence is

measured on the right y axis. The write sequence includes a 5 V amplitude, 300ps
voltage pulse used to SET the device, and a 2 V, 1 ns voltage pulse used to read.
c The erase sequence includes a −4 V amplitude, 900 ps voltage pulse used to
RESET the device, and a 2 V, 1 ns voltage pulse used to read.
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ments of the memristor in multiple states monitored for 12 h. f Resistance mea-
surements of the memristor in multiple states.
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scale, and control complexity8,41,42. More recent demonstrations
showed integrated nano-opto-electro-mechanical phase shifters with
improved energy efficiency, but were still limited in write speeds
(∼1 µs), require large switching voltages (> 20V), and have high
mechanical failure rates43–45.

On the other hand, phase-change materials (PCM) such as
Ge2Sb2Te5 (GST) and, more recently, Sb2Se3 have been explored
extensively as a candidate for nonvolatile memory within silicon PICs
with encouraging results34,46–49. Recently, they have shown the ability
to achieve aπ phase shift with less than 12 µmof length and reasonably
low insertion losses (<0.3 dB). However, these materials are also lim-
ited in writing speed and typically require high input powers (∼mW) to
heat them long enough to change the phase from amorphous to
crystalline. Most recently, BaTiO3 (BTO) nonvolatile phase shifters
have also been demonstrated with multi-level states with a switching
energy as low as 4.6 pJ and excellent controllability35. While a promis-
ing advancement, they require a reset sequence consisting of 10,000
pulses with a duration totaling hundreds of microseconds before
switching states. Phase shifters based on BTO also require about a
∼1mm phase shifter length to achieve a π phase shift, which is chal-
lenging to scale and achieve high-speed operation.

In this work, we have demonstrated a nonvolatile III–V-on-silicon
memresonator used for programmable photonicmemory operating at
record low switching energy (0.15–0.36pJ), sub-nanosecond switching
times enabling high-speed, energy-efficient in-memory computing
within silicon photonic neural networks. These nonvolatile optoelec-
tronic memory devices save a great deal of energy by reducing the
power consumption involved in programming phase shifters within
photonic integrated circuits. By using short voltage pulses to perma-
nently switch the state of this device, the energy typically lost in idle
power consumption is saved throughout the duration of an inference
task. For example, after a write pulse is applied to the memresonator,
the device will retain its state until another voltage pulse is used to
write a different weight value. In this way, it is worth reiterating that no
idle power consumption is wasted in between reading or writing the
weight value stored within the memresonator.

In addition, these nonvolatile photonic phase shifters can act as
weights within silicon photonic neural networks which can be updated
in real-time, enabling algorithms such as error backpropagation to be
executed directly on-chip, greatly optimizing the acceleration of sili-
con photonic neural networks. Another significant distinction is that
the memory is directly on the same chip as the phase shifter, enabling
the capability to perform in-memory photonic computing. This avoids
the optical-to-electrical conversion losses involved in going to off-chip
memory in between each data set used to train a neural network. For
instance, in the gradient descent algorithm, predicted values are sub-
tracted from the actual values of the neural network in between
training iterations to calculate the cost function This device can save a
substantial amount of energy involved in fetching data typically stored
in an external memory chip like static random-accessmemory (SRAM)
or dynamic random-access memory (DRAM) to calculate the cost
function in between training iterations. Another area in machine-

learning this device may apply to is transfer learning, described as the
practice of re-using a pre-trained neural network instead of training
one from scratch to reduce latency and save computational
resources50,51. Given that the weights in the backbone layer are fixed,
they would benefit from being stored in on-chip memory such as with
thesememresonators. Also, these memresonators can simultaneously
be used for the trainable portion of the neural network since they are
also capable of being switched at high speeds and with low energy.

Lastly, thesedevicesweredevelopedon aheterogeneous III–V-on-
silicon platform, which allows for the co-integration of non-linear
active optoelectronic devices, such as lasers and modulators, directly
on the same chip as a silicon photonic neural network or an optical
FPGA52. Since these types of photonic integrated circuits do not
inherently need to transmit optical signals off-chip, we gain a sig-
nificant advantage by integrating the light source directly on-chip. This
technology can immensely improve the energy efficiency, stability,
and scalability of integrated photonic processors, advancing their
potential for use in next-generation HPCs and edge computing.

Future designs will feature device and structural design
improvements in order to reduce switching voltages and improve the
extinction ratio. The total voltage applied across the device distributes
over the Al2O3 layer, semiconductor layers (n-GaAs, p-Si), and metal/
semiconductor contact layers. By reducing the active area of the
device and thickness of the Al2O3 layer, optimizing the semiconductor
layers’ doping concentrations and thicknesses, and improving the
quality of the metal/semiconductor contact interface and the Al2O3

layer, we can reduce the switching voltage53. Also, by increasing the
critical coupling within the microring resonator, we can achieve a
better extinction ratio and a smaller FWHM. We are also working on
improving the waveguide losses on our platform, which will also
improve the Q and extinction ratio. Also, TEM images will be taken to
investigate the conductivefilament formationwithin thesedevices and
study the physical processes behind the switching mechanisms in
these devices. These studies will aid in the design of future devices
such as the selection of the resistive-switching oxide material.

Another design change will be to integrate a field-effect transistor
in series with the memristor to be able to apply voltage pulses on the
device with control of the device current. Integrating these devices
with a MOS field-effect transistor (MOSFET) in a one-transistor one-
resistor (1T1R) configuration to reliably control the current flow in the
device without external circuitry. Within a 1T1R configuration, a
MOSFET is connected in serieswith amemristor and is used to limit the
current in thememristor by applying a gate voltage on theMOSFET to
modulate the channel length and allow only a certain amount of cur-
rent to flow through the MOSFET channel. This will play a significant
role in improving the control of switching by controlling the amount of
current able to conduct in the device. It will also enable multiple
intermediate resistance states by using different voltage pulse para-
meters to select different states while the MOSFET protects the device
from permanent breakdown with different voltage pulses. Lastly,
memristors can also be integrated within Mach–Zehnder inter-
ferometers as an alternative form of a nonvolatile phase shifter also

Table 1 | Implementations of programmable phase shifters on a silicon photonic platform

Thermo- optic41,42,54–56 Charge- trapping57,58 MEMS43,59 PCM11,34,47,48,60–63 BaTiO3 (BTO)35,50 Memresonator (this work)

Switching speed 2.4 µs > 350ms ∼1 µs <100 ns <1ms <1 ns

Switching energy 30.5 nJ 11.4–17.2 pJ 0.2 nJ 180 pJ–17 nJ 4.6–26.7 pJ 0.15–0.36 pJ

Retention time N/A 10 years N/A 10 years 10h 12 h

Lπ* ∼10 µm 865µm ~1 cm 11 µm 1mm ~350µm

Insertion loss 0.23 dB ∼1 dB 3.5 dB ∼0.3dB ∼0.1 dB 0.27 dB**

Non-volatility No Yes No Yes Yes Yes
*Lπ refers to the length of the phase shifter required to achieve a π phase shift.
**The total insertion loss is measured to be 4 dB at the operating point of interest when including coupling losses.
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commonly used within silicon photonic neural networks, quantum
computing circuits, and FPGAs53.

Methods
Microring resonators with a diameter of 20 µm were measured on a
copper stage with III–V side up. The experimental set-ups for the
measurements taken are shown in Supplementary Fig. 1. Electrical
measurements were taken with an Agilent B1500A semiconductor
device analyzer, including a B1525A HV-SPGU high-voltage pulse gen-
erator. GSG RF probes (Cascade Microtech ACP−40) were used to
probe the devices and measure the high-speed response. Optical
power measurements were taken using a Newport 2936-R optical
power meter. The device was designed with input and output grating
couplers, which had about 6 dB of loss each at peak transmission. A
Santec TSL-510 tunable laser is used to illuminate the input grating
coupler with a cleaved fiber. The laser wavelength is swept and the
output of the device is measured through the output grating coupler
which is coupled to an optical power meter.

To measure the switching speed of the memresonator, we couple
light coming from a tunable laser at the resonant wavelength of the
memresonator into the input grating coupler. We then apply voltage
pulses from a Keysight M8195A Arbitrary WaveformGenerator to read
and write the memristor, and couple light coming from the output
grating coupler into a high-speed photodiodewhich is then connected
to a Tektronix 8GHz real-time oscilloscope. A 100ns wide, 2 V ampli-
tude pulse was used to read the memresonator in the retention time
and endurance measurements.

Data availability
All data are available in the main text or the supplementary materials.
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