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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Remotely sensed top-of-the-canopy (TOC) SIF is highly impacted by non-physiological structural and environ-
mental factors that are confounding the photosystems’ emitted SIF signal. Our proposed method for scaling TOC
SIF down to photosystems’ (PSI and PSII) level uses a three-dimensional (3D) modeling approach, capable of
accounting physically for the main confounding factors, i.e., SIF scattering and reabsorption within a leaf, by
canopy structures, and by the soil beneath. Here, we propose a novel SIF downscaling method that separates the
structural component from the functional physiological component of TOC SIF signal by using the 3D Discrete
Anisotropic Radiative Transfer (DART) model coupled with the leaf-level fluorescence model Fluspect-CX, and
estimates the Fluorescence Quantum Efficiency (FQE) at photosystem level. The method was first applied on in-
situ diurnal measurements acquired at the top of the canopy of an alfalfa crop with a near-distance point-
measuring FloX system. The retrieved photosystem-level FQE diurnal courses correlated significantly with
photosynthetic yield of PSII measured by an active leaf florescence instrument MiniPAM (R = 0.87, R? = 0.76
before and R = —0.82, R = 0.67 after 2.00 pm local time). Diurnal FQE trends of both photosystems jointly were
descending from late morning 9.00 am till afternoon 4.00 pm. A slight late-afternoon increase, observed for three
days between 4.00 and 7.00 pm, could be attributed to an increase in FQE of PSI that was retrieved separately
from PSII. The method was subsequently extended and applied to airborne SIF images acquired with the HyPlant
imaging spectrometer over the same alfalfa field. While the input canopy SIF radiance computed by two different
methods, i) a spectral fitting method (SFM) and ii) a spectral fitting method neural network (SFMNN), produce
broad and irregularly shaped (skewed) histograms (spatial coefficients of variation: CV = 29-35 % and 14-20 %,
respectively), the retrieved HyPlant per-pixel FQE estimates formed significantly narrower and regularly bell-
shaped near-Gaussian histograms (CV = 27-34 % and 14-17 %, respectively). The achieved spatial homoge-
neity of resulting FQE maps confirms successful removal of the TOC SIF radiance confounding impacts. Since our
method is based on direct matching of measured and physically modelled canopy SIF radiance, simulated by 3D
radiative transfer, it is versatile and transferable to other canopy architectures, including structurally complex
canopies such as forest stands.
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1. Introduction

Solar-induced chlorophyll fluorescence (SIF) is increasingly exploi-
ted as a proxy of photosynthetic functional status of green vegetation.
SIF is an electromagnetic radiation emitted by photosystems inside
green vegetation leaves that was excited by Photosynthetically Active
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Radiation (PAR) upon its exposure to solar radiation (Mohammed et al.,
2019). It is a subtle photon flux, representing only a small fraction of
solar radiation scattered back by vegetation canopies (2-6 % at 740 nm
(Campbell et al., 2008)), which is spectrally overlapping with the can-
opy reflected radiation. Nevertheless, it provides a unique real-time
information about the functional state of vegetation photosynthesis, as
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it represents together with photochemical reactions and heat dissipation
a possible pathway used by green vegetation to convert and emit part of
the absorbed PAR (APAR) energy. In recent years, optical sensors and
SIF retrieval techniques from in-situ (Cogliati et al., 2015a; Liu et al.,
2015; Zhao et al., 2018), airborne (Frankenberg et al., 2018; Rascher
et al.,, 2015; Siegmann et al., 2019) and satellite (Frankenberg et al.,
2011; Guanter et al., 2021; Zhao et al., 2024) measurements have been
developed. They are exploiting the narrow spectral bands, where SIF has
a larger relative contribution to the total radiation scattered by vege-
tation canopies, such as atmospheric oxygen absorption bands O2A and
OB, and the solar Fraunhofer lines. This allowed to harness the
remotely sensed SIF for potential applications, such as, vegetation early
stress detection (Ac et al., 2015; Song et al., 2018) or tracking vegetation
photosynthetic activity and consequent Gross Primary Productivity
(GPP) (Guanter et al., 2014; Liu et al., 2019b; Tagliabue et al., 2019;
Yang et al., 2021). Yet, the strongest relationship between SIF and
photosynthetic activity is found at the spatial scale of the photosystem
one (PSI) and the photosystem two (PSII), from where it originates.

The magnitude of emitted SIF radiation is driven by the amount of
PAR absorption and the quantum efficiency of fluorescence emission.
Before being absorbed in chloroplasts, PAR undergoes wavelength
dependent interactions (i.e., scattering and absorption): i) inside the
atmosphere, ii) with the vegetation canopy architecture elements, and
finally iii) with the anatomical structures of individual leaves. After its
emission by PSI and PSII and before its registration by a remote sensing
sensor, SIF radiation undergoes the same interactions but in the reverse
order, which causes an angular anisotropy of the recorded SIF signal
and, to some extent, its decoupling from the plant functional processes
(e.g., physiological stress reactions, primary production, etc.) (Porcar-
Castell et al., 2021). These interactions, undergone by both PAR and SIF
radiations, strongly depend on non-physiological confounding factors
that are interfering with the photosynthetic activity estimation, such as,
the leaf internal structural, biochemical, and optical properties, but also
the canopy structure, atmospheric conditions, solar and viewing di-
rections and the actual background (i.e., soil and understory) reflectance
(Verrelst et al., 2015). Since the red SIF emission is highly affected by its
chlorophyll absorption, Fournier et al. (2012) found that the red to far-
red fluorescence ratio decreased by a factor of two between the leaf and
the canopy levels. Therefore, a downscaling, ie., a normalization,
approach is required to reduce (ideally remove) the impacts of the
confounding factors and extract information driven purely by photo-
synthetic processes. Such a downscaling aims at estimating an efficiency
of chlorophyll fluorescence at lower spatial scales (i.e., the level of leaf
or even the level of photosystems) from radiance measurements ac-
quired at a higher spatial scale (i.e., canopy level). Several canopy-to-
leaf SIF downscaling approaches, that were shown to improve the esti-
mation of vegetation GPP (Liu et al., 2020) as well as drought moni-
toring (Lin et al., 2022), have been proposed.

Yang and van der Tol (2018) approximated the canopy scattering of
far-red SIF by a ratio of canopy far-red reflectance to the product of
canopy interceptance and leaf albedo. The Fluorescence Correction
Vegetation Index (FCVI) was later proposed to overcome the necessity of
estimating the canopy interceptance (Yang et al., 2020). Another
method, proposed by Zeng et al. (2019), uses the optical index of near-
infrared reflectance of vegetation (NIRv) (Badgley et al., 2017), which
was found to be more robust against soil effects and, consequently, more
applicable for sparse canopies (Bendig et al., 2025). The NIRvH index,
utilizing hyperspectral data, was later proposed to further remove re-
sidual soil impacts observed in NIRv (Zeng et al., 2021). These methods
have the advantage of being simply applicable and, hence, practical.
However, they rely on assumptions limiting their performance, e.g., the
non-reflective soil assumption for FCVI (Yang et al., 2020) originating
from the underlaying spectral invariant theory (Knyazikhin et al., 2011).
Additionally, they do not scale the SIF signal all the way down to the
photosystems.

More advanced methods, downscaling SIF to the level of PSI and
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PSII, combine the Soil Canopy Observation, Photochemistry and Energy
fluxes (SCOPE) model (van der Tol et al., 2009) with a numerical opti-
mization (Celesti et al., 2018) or with machine learning techniques (Liu
et al., 2019a; Scodellaro et al., 2022). Since SCOPE is a one-dimensional
(1D) model, the applicability of these approaches is limited to homo-
geneous and structurally simple canopies. Unlike 1D canopy models, 3D
landscape models for SIF radiative transfer work with a more realistic, i.
e., spatially heterogenous, canopy structure representation, leading to
more accurate top-of-the-canopy (TOC) SIF simulations, especially for
architecturally complex multi-species canopies (Malenovsky et al.,
2021; Regaieg et al., 2021). The Discrete Anisotropic Radiative Transfer
(DART) model (Gastellu-Etchegorry et al., 2017) is one of the compre-
hensive 3D radiative transfer models for optical remote sensing appli-
cations. In this study, we used its latest mode called DART-Lux, which
was extended to simulate SIF (Regaieg et al., 2023). Being based on the
Bi-Directional Path Tracing algorithm (Wang et al., 2022), DART-Lux
enhances significantly DART’s computational efficiency and delivers
superior accuracy compared to the older and traditional Flux Tracking
(DART-FT) mode.

The aim of this work is to present and test a new canopy-to-
photosystem SIF downscaling method based on the 3D radiative trans-
fer of DART-Lux. This method is, first, applied on in-situ diurnal SIF
measurements acquired for an alfalfa crop field with a FloX system
(Naethe et al., 2024), which allowed us to investigate temporal/diurnal
variations of the alfalfa PSI and PSII Fluorescence Quantum Efficiency
(FQE). Secondly, the method is adjusted and applied on SIF airborne
images recorded by the HyPlant airborne imaging spectrometer
(Rascher et al., 2015). This enabled us to produce FQE maps of the al-
falfa crop for four dates and assess their spatial variability. The main
objective is to demonstrate the potential of 3D DART modeling for
extracting a standardized (i.e., SIF efficiency comparable among
different observations, spatial and temporal scales, canopy structures,
and atmospheric conditions, etc.) photosystem-level physiological in-
formation from temporally resolved and spatially explicit TOC SIF
radiance measurements. The study addresses the following two research
questions: 1) how does the retrieved FQE vary diurnally and is this
variation in accordance with published diurnal courses of crop photo-
synthetic activities, and 2) how does the FQE retrieved from airborne SIF
imagery vary spatially in comparison to the spatial variation of TOC SIF
radiance?

2. Materials and methods
2.1. Data acquisition and preprocessing

2.1.1. Study site

The study was conducted in a mono-species agricultural field of an
alfalfa (Medicago sativa) crop, located northeast of the city of Lleida
(Catalonia, Spain) (Appendix A). The data acquisition was carried out
during the Land surface Interactions with the Atmosphere over the
Iberian Semi-arid Environment (LIAISE) measurements campaign, in
summer 2021.

2.1.2. In-situ SIF data

The collected data includes diurnal measurements acquired with a
FloX system (JB Hyperspectral Devices GmbH, Germany). The FloX
system measures spectrally resolved TOC upwelling (25° field-of-view
(FOV)) and solar downwelling radiance (180° FOV). It has two spec-
trometers. 1) FLAME (Ocean Optics, USA): a Visible — Near Infrared
(400-950 nm) spectrometer with 0.65 nm Spectral Sampling Interval
(SSI) and a spectral resolution of 1.5 nm Full Width at Half Maximum
(FWHM). 2) QE Pro (Ocean Optics, USA): a fluorescence spectrometer
(650-800 nm) with 0.17 nm SSI and a spectral resolution of 0.3 nm
FWHM. The nadir viewing bundle of FloX optical fibers was positioned
at 2 m high, which corresponds to a circular measurement footprint of c.
0.9 m in diameter on the ground.
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The standard FloX processing, provided by the FloX manufacturer,
was applied to the recorded dataset to convert raw data to at-sensor
radiance. In the next step, the SFM algorithm was employed to
retrieve SIF from the O2A and O3B oxygen absorption features at 760
and 687 nm and the SpecFit algorithm was applied to reconstruct the full
SIF radiance spectrum for each measurement. More details about the
SFM and the SpecFit method can be found in Cogliati et al. (2015b) and
Cogliati et al. (2019), respectively. In this study, we used the local
maximum of the red SIF peak (around 685 nm) and the far-red peak
(around 740 nm) computed from the fully reconstructed SIF radiance
spectra. We analyzed FloX observations acquired on six consecutive days
between 17th and 22nd of July 2021. To reduce the noise originating
from the high temporal frequency of one-minute full SIF spectra
retrieved from the FloX measurements, we aggregated the values into
15-min steps by averaging the measurements over ten-minute windows
centered around each 15-min step.

Figure 1 shows the diurnal variation of the SIF radiance at the red
and the far-red peaks.

The incoming broadband PAR radiation [400-700 nm] was
measured using a Kipp&Zonnen PAR Lite sensor. Figure 2 shows the
diurnal PAR for the six days of interest from 17th to 22nd July 2021.

2.1.3. Optical properties

ASD Fieldspec-4 spectroradiometer (Malvern Panalytical Ltd., USA),
equipped with an ASD leaf-clip and a pistol grip, was used to collect
optical properties of leaf and soil reflectance samples on 19th and 20th
of July 2021.

2.1.4. Active measurements of PSII photosynthetic yield

To get further insight in the relationship between retrieved FQE
values and the actual photosynthetic activity, the photosynthetic yield
of PSII was measured with a miniaturized pulse-amplitude modulated
photosynthesis yield analyzer (Mini-PAM) (Bilger et al., 1995). The PSII
photosynthetic yield was calculated as (Fm’ — F)/Fm’, where F is the
fluorescence yield of a light-adapted leaf and Fm’ is its maximum fluo-
rescence yield after exposure to a saturation light pulse. These mea-
surements were done on 19th July 2021. Since the canopy was still open
on that day, leaves were predominantly sunlit and, hence, the measured
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TOC SIF originated mostly from the sunlit leaves. Ten sets of sunlit
leaves were measured during that day. Each set was composed of 17 to
30 sample leaves, which were measured within a time interval of 10 to
25 min. The measured quantities of every set were averaged and asso-
ciated to the middle point of the corresponding measuring time interval.

2.1.5. Airborne SIF images

For spatial analyses, we used imaging data of the HyPlant airborne
instrument that was specifically designed for vegetation monitoring and
SIF retrieval. It contains a DUAL imaging spectrometer, measuring sur-
face reflectance in the spectral range from 380 to 2500 nm, and a FLUO
imaging spectrometer with a distinctly higher spectral resolution and
FWHM within the 670-780 nm spectral range for retrieval of SIF
(Rascher et al., 2015; Siegmann et al., 2019). During the six days
considered in this study, four HyPlant overflights were performed: 1) on
17th July at 2:00 pm, 2) on 20th July at 3:32 pm, 3) on 21st July at 3:42
pm and 4) on 22nd July at 2:04 pm (local time), providing images with a
ground sampling distance of 1.7 m.

Two different retrieval methods were applied to the HyPlant FLUO
data to derive TOC SIF from the O2A absorption band (Fig. 3, Fig. 4): i)
the Spectral Fitting Method (SFM) (Cogliati et al., 2019), and ii) the
Spectral Fitting Method Neural Network (SFMNN) (Buffat et al., 2025)
method, which is a novel, self-supervised, neural network-based adap-
tion of SFM. Similarly to SFM, it aims at disentangling the at-sensor
signal recorded by an imaging spectroradiometer through fitting a
simplified physical model of at-sensor radiance. The model encompasses
i) the parameterization of surface properties such as reflectance and
fluorescence spectral forms, ii) the down and upwelling radiative
transfer through the atmosphere, and iii) the sensor response affected by
miscalibration of the at-sensor signal. While the fit in SFM is performed
for each observed pixel individually by means of a least-squares opti-
mization, SFMNN trains a neural network that learns features in the
spectral input to optimally reconstruct the measured at-sensor radiance.
SFMNN leverages physical, signal and sensor-specific properties to
invert the radiative transfer that yields the measured at-sensor radiance.
Since this inversion is ill-posed its reconstruction-based loss formulation
has to be extended by multiple constraining regularizers and an archi-
tectural constraint. At its core, SFMNN trains an encoder-decoder type of
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Fig. 1. Diurnal courses of FloX measured SIF radiance at the red peak (a) and at the far-red peak (b) computed using the specFit method. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Diurnal courses of incident photosynthetically active radiation (PAR [400-700 nm]) for six days from 17th to 22nd July 2021.

architecture. It is based on multi-layer perceptrons predicting the
physical variables that parameterize the signal generation model within
individual image patches of a fixed size. It differentiates between a
pixelwise and a patch-wise prediction, where patch-wise variables are
estimated as single scalars for individual patches. This differentiation in
output dimensionality mirrors the difference in spatial auto-correlation
of the trained model components. As a consequence, variables related, e.
g, to the surface reflectance and SIF emission are predicted in a pixel-
wise fashion, while the atmospheric transfer is estimated on a patch-
wise basis. No labeling is used during the self-supervised training of
SFMNN. The loss adopted for SFMNN consists of a weighted recon-
struction residual with two additional regulators ensuring physiological
and physical plausibility of the retrieved SIF. The reconstruction resid-
ual imposes implicit constraints on the network optimization. The
spectral weighting used in this loss part reflects varying SIF signal
strength in the spectral dimension according to actual SIF signal and
sensor characteristics. Additionally, the physiological regulator forces
SFMNN to predict vanishing fluorescence emission in barren image
pixels, while the physical regularization ensures that the predicted at-
mospheric transfer corresponds to a normalized function with an upper
boundary. The SFMNN can be in principle formulated for various data
acquired by a range of different hyperspectral imaging sensors. In a
validation study, in which SFMNN results were compared to in-situ SIF
estimates, Buffat et al. (2025) found comparable prediction perfor-
mances of both SFMNN and SFM methods when applied to HyPlant
FLUO data within a validation study using in-situ TOC SIF measurements
from multiple years. Yet, some significant differences in the SIF pre-
dictions between the two methods occured. Subsequently, the authors
found a lower prediction noise and improved correlation scores of
SFMNN but also a systematic overestimating bias with respect to the in-
situ SIF measurements. Certain uncertainties in the assessment of per-
formance remain, due to a large performance variation across data sets
possibly due to disregarding directional effects in the validation.

2.2. Downscaling methodology

2.2.1. Generalized method
The SIF downscaling is done in the four steps aiming to estimate the
photosystem-level FQE:

e Irradiance inversion

The incoming PAR is inverted using the DART atmospheric radiative
transfer module to compute atmospheric optical depth (AOD) by
matching a simulated PAR to the measured one (Wang et al., 2020). The
retrieved AOD values are subsequently used as inputs in DART atmo-
spheric radiative transfer, allowing for a sufficiently representative di-
vision between direct and diffuse spectral irradiance within the PAR
region (see an example in Appendix B). This division is important for
correct induction of DART-modelled SIF emissions.

e Optical properties definition

Measured soil reflectance spectra are directly imported in DART,
whereas leaf optical properties are modelled with the Fluspect-Cx model
(Vilfan et al., 2018), using the leaf structural number N, leaf contents of
chlorophylls, carotenoids, anthocyanin pigments, and dry matter as
input parameters. These parameters can be estimated either by inverting
the Fluspect-Cx model based on leaf-level optical properties measure-
ments, or by inverting DART coupled with Fluspect based on canopy-
level reflectance measurements. The leaf water content is not relevant
for this study since the spectral range of its absorption is outside the SIF
excitation and emission ranges.

e 3D mock-up creation

Two 3D computer representations of alfalfa plants, required for 3D
radiative transfer, were created in the Blender software (https://www.bl
ender.org) according to multi-angular photographs of the actual plants
takenin the field against a white background used as backdrop in
Blender (see screenshots from Blender provided in the supplementary
materials). Based on information about canopy structure derived from
different available sources, such as high-resolution RGB photos, spec-
troradiometer TOC reflectance measurements, multi/hyperspectral im-
agery, a representative 3D mock-up of the alfalfa field is created.

o FQE estimation

In this step, a DART simulation is run to produce TOC SIF radiance
using a reference value of FQE as a first guess. Then, the estimated FQE
value is inferred from the measurement and, in the case of SIF images,
from the simulated TOC SIF radiance with potentially additional
simulations.

2.2.2. Application to FloX in-situ diurnal measurements
e Optical properties definition

Since the ASD leaf-clip does not allow to directly measure leaf
transmittance, we complemented the measured leaf reflectance with the
simulated transmittance by retrieving its input properties through the
inversion of the Fluspect-Cx model (Vilfan et al., 2018). The model
inversion was done in two consecutive steps: i) retrieval of the leaf
structural coefficient N using the maximal reflectance within the near-
infrared plateau (750-850 nm) by adapting a method published in
Jacquemoud et al. (1996), and ii) cascading retrieval of the leaf
biochemical properties (ie., chlorophyll a + b, total carotenoid,
anthocyanin, water, and dry matter contents) as described in Mal-
enovsky et al. (2006) and Lamsal et al. (2022). The retrieved leaf
structural and biochemical properties of 43 measured leaves were
averaged and used as Fluspect-Cx inputs to simulate leaf spectral
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Fig. 3. SIF O,A radiance images at the top of observed alfalfa canopy derived from four HyPlant overflights using the SFM (left) and the SFMNN (right) methods.
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Fig. 4. Histograms and coefficients of variation (CV) of the top-of-the-canopy SIF radiance images for the four HyPlant overflights retrieved with the SFM (a) and the

SFMNN (b) methods.

reflectance, transmittance, and
excitation-emission matrices.

subsequently also fluorescence

e 3D mock-up creation

Created 3D objects of differently high and large plants were manu-
ally positioned and scaled to approximate the photos taken by a RGB
camera, depicting the field of view of the FloX optical fibers on the top of
the crop canopy. This way, we created six 3D mock-ups for the six
investigated days (i.e., 17th to 22nd July 2021). Fig. 5 illustrates the
RGB photos and the corresponding DART-simulated RGB images for
these six days. Fig. 6 shows a comparison between the TOC reflectance
measured by FloX and simulated by DART on 19th July 2021 at 10 am
(local time) as an example.

o Diurnal FQE estimation

The FQE retrieval is done using a single forward DART simulation of
the top-of-canopy SIF radiance using as input an arbitrary FQE value.
The coefficients of the SIF excitation-emission matrices, computed by
the Fluspect-CX leaf fluorescence model (Vilfan et al., 2018) embedded
in DART, increase proportionally with the increase of FQE representing

DART RGB
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Fig. 6. FloX-measured and the corresponding DART-simulated top of canopy
reflectance (19th July 2021, 10 am local time).

both photosystems, while keeping all leaf biochemical properties fixed
as retrieved from in-situ measured leaf optical properties (described
above). Consequently, the first order TOC SIF emission (i.e., SIF induced

DART RGB

21/07/2021 20/07/2021

22/07/2021

Fig. 5. RGB camera photos and DART simulated RGB images over the field of view of the FloX system for the six considered days.
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by previously computed direct and diffuse solar irradiance, which was
intercepted by a leaf directly and after being scattered by canopy ele-
ments) also increases proportionally to the FQE magnitude. Higher
order TOC SIF emissions (i.e., SIF induced by re-interception of the
previously emitted SIF radiation) are proportional to the n™ power of
FQE, with n being the order of emission. Since the FQE is significantly
smaller than one, these higher order SIF emissions are, in practice, very
small compared to the first order SIF emission. Additionally, the prop-
agation of SIF radiation through the canopy is not influenced by the FQE
values. Thus, the TOC SIF emission can be assumed to increase pro-
portionally to the increase in FQE, if all other scene (ie., crop field)
parameters are held constant.

Accepting this assumption, one can consider the arbitrary FQE value
as the reference (FQEref) and compute an estimation of the FQE value
(FQE,s) ensuring the equality of simulated and measured TOC SIF
radiance as follows:

SIFneas

1
SIF, W

FQEy = FQEref °

where FQE, is the reference FQE value used for the forward DART
simulation, SIF,; is the TOC SIF radiance simulated using FQE,, and
SIF 05 is the measured TOC SIF radiance.

Eq. (1) can be used to estimate FQE from SIF radiance measured at
any spectral band (e.g., O2A or OB absorption features) of a spectrally
resolved SIF radiance.

In this study, we target the maximum of the SIF radiance at the far-
red SIF peak around 740 nm, allowing for a good agreement between the
simulated and the measured SIF values regardless of a spectral wave-
length shift (see Fig. 7.a).

This estimation method was modified to estimate also FQEs of PSI
and PSII separately by employing an older version of the Fluspect-CX
model (Vilfan et al., 2016). Considering that red SIF is associated
mainly with PSII and far-red SIF is emitted by both PSI and PSII (Franck
et al., 2002; Iriel et al., 2014; Porcar-Castell et al., 2021), the estimation
of the PSI and PSII FQEs was computed as follows:

i. First forward DART simulation of TOC SIF with FQE reference values
for PSI and PSII (FQE ps; and FQE,s psyr, respectively).

ii. Estimation of FQE for PSII (FQE,s psy) based on the red peak of
measured SIF radiance (SIFeqs.¢q) and the red peak of the simulated
PSII SIF radiance (SIFref redpsi):

SIF, meas.red

FQE s psit = FQEref psir ® 2

SIF, ref red PSIT

Second forward DART simulation parametrized with the FQE e ps
and FQE, psiy values

a) Combined Photosystems
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iii. Estimation of FQE for PSI based on the far-red peak of the
measured TOC SIF radiance (SIFqs fa,_,ed), the far-red peak of
the simulated PSI SIF radiance (SIFy, a,,,edps,), and the far-red
peak of the simulated PSII SIF radiance (SIFg, far,red_psu):

SIFmea.s. far—red — SIFsim. far—red.PSII

FQE s ps1 = FQEref.ps1 ® 3

SIF, sim. far—red.PSI

The DART SIF radiance simulated with the estimated FQE, psr and
FQE, psiy values allowed for finding a close agreement between simu-
lated and measured SIF spectra (see Fig. 7.b).

2.2.3. Application to HyPlant airborne measurements

e Preliminary step: a sensitivity analysis assessing canopy structural
impacts

To investigate the potential impact of vegetation canopy structure
within the newly proposed FQE estimating approach and to identify the
most influential structural parameters, the FQE estimation from FloX
was additionally applied to the following specific canopy
representations:

i. One-dimensional (1D) mock-ups represented by a quasi-turbid
medium (ie., a cloud of very small leaf facets approximating a
foliage turbid medium) with the same Leaf Area Index (LAI) and
Leaf Angular Distribution (LAD) as the original canopy mock-ups,

ii. 3D mock-ups of randomly distributed reconstructed alfalfa plants
with the same LAI and LAD as the original canopy mock-ups.

iii. 3D mock-ups of randomly distributed reconstructed alfalfa plants
with the same canopy cover fraction as the original canopy mock-
ups, and

e Retrieval of canopy traits for optical properties definition and 3D mock-up
creation

To perform the FQE retrieval from HyPlant SIF image data, a reality
representing mock-up must be created and parametrized for the whole
alfalfa field. Since the manual 3D mock-up construction of a large-sized
crop field is unfeasible, we retrieved the actual per-pixel leaf biochem-
ical properties (i.e., the Fluspect-CX inputs) and the canopy cover frac-
tion from HyPlant hyperspectral reflectance images of the same canopy.

For each analyzed HyPlant overflight, a look-up table (LUT) of
simulated HyPlant hyperspectral reflectance signatures associated to
their respective input parameters were simulated in DART for small 1 x
1 m? scenes, with randomly distributed plants. Table 1 shows the DART
input parameters used to generate the reflectance LUT. Since

b) Separated Photosystems
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Fig. 7. Spectral reconstruction of measured TOC SIF radiance in comparison to DART TOC SIF radiance simulated using reference FQE values (FQE,.) and estimated
FQE values (FQE,) for a) combined photosystems, b) PSI and PSII separately on 19th July 2021 at 10 am (local time).
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Table 1

DART input parameters for simulation of HyPlant-like reflectance look-up table.
Parameter Min value Max value Step
Structural coefficient N 2 2.2 0.05
Chlorophyll content [ug e cm 2] 20 80 10
Carotenoid content [ug e cm2] 5 15 2
Dry matter content [ge cm~2] 0.002 0.02 0.003
Anthocyanin content [ug e cm~2] 0 7 1
Canopy cover fraction 0.0538 0.9527 ~0.05

wavelengths impacted by absorption of leaf water are not simulated, the
leaf water content was kept as a default Fluspect-CX value. Field-
measured reflectance of two soil spectra (i.e., dark and bright) and
their arithmetic average (spectra shown in Appendix C) were used in the
DART simulations to consider the spatial variability in soil reflectance.
The generated LUT was used to train Artificial Neural Network (ANN)
models that were, subsequently, applied per HyPlant image pixel to
estimate the targeted leaf and canopy traits (i.e., leaf structural number
N, leaf contents of chlorophyll, carotenoid, and anthocyanin pigments,
dry matter content, and canopy cover fraction). The ANNs produced, in
addition, a soil coefficient between 0 and 1 per pixel (Fig. E2), which
was used to compute a weighted average of the dark and the bright soil
reflectance spectra (i.e., 0: dark soil, 1: bright soil, 0.5: averaged soil).
Feedforward ANNs with different architectures (one and two hidden
layers, varying number of neurons per layer), different activations
functions (i.e., ReLu, tanh, and sigmoid) were trained for different
number of epochs (1 to 10 epochs). The best estimation among the tested
ANNs was chosen based on Root Mean Square Error (RMSE) calculated
between the HyPlant and the DART simulated reflectance signatures
within the spectral range of 450 to 850 nm. The pixels corresponding to
the neighboring fields, as well as the pixels with values of Normalized
Difference Vegetation Index (NDVI) < 0.4, corresponding to tractor
tracks within and around the field, were excluded from the comparison.

e 3D mock-up creation and parametrization

The DART 3D mock-up was created and parametrized per HyPlant
pixel automatically through a Python script HyPlant SIF. The estimated
leaf/canopy traits and soil coefficients were used as input parameters.
The method used for building the DART mock-up for the whole alfalfa
field is described in Appendix D.

e FQE estimation:

The DART 3D mock-ups constructed for every HyPlant pixel, were
used to run forward DART SIF simulations based on a reference FQE
value that was spatially constant over the whole analyzed field. Unfor-
tunately, the proportionality assumption of the TOC SIF radiance in
HyPlant images to the simulated FQE became less accurate, as the SIF
value of a given HyPlant pixel was impacted by the values of its
neighboring pixels through the scattering of the SIF emitted in the
neighboring pixels by the plants and, eventually, the bare soil in a given
pixel (i.e., the adjacency effect). Therefore, more than one FQE adjust-
ment iteration was needed to find a good agreement between the DART
simulated and the HyPlant acquired SIF images. The best fitting per-
pixel FQE was found as follows:

i. Iteration 0:
o Forward simulation of TOC SIF radiance (SIFpagrr) using a refer-
ence value FQE, constant over the field
o First adjustment of the FQE value per pixel (x,y) :

SIFHyPlant (va)

FOE, (x.y) — FOE, »
QE1(x,y) = FQE, SIFparro (X,¥)

€]
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ii. Iterationsi > 0:
while RMSE (SIFparri-1, SIFuypian:) > € = 0.01 Wem 2 e ym ' esr1

o Simulation of TOC SIF radiance (SIFDARTJ-) using the adjusted
FQE;(x,y). The impact of the neighboring pixels’ FQE on the pixel
(x,y) SIF radiance is intrinsically accounted for by DART

o Adjustment of the FQE value per pixel (x,y) :

SIFpypiant (Xy)

SIFparri (Xy) )

FQE;;1(xy) = FQE;(xy) ®

3. Results
3.1. FloX diurnal measurements
e Diurnal FQE retrieval

Fig. 8 shows the diurnal courses of retrieved FQE values for the six
days considered in this study. The diurnal variation trend is similar but
not the same; FQE decreased from the morning hours until around 4:00
pm. After this time, it remained constant for first three days, while it
increased again in last three days, showing a local maximum around
6:00 pm.

Fig. 9 shows FQE diurnal courses during the six analyzed days
retrieved for PSI and PSII separately. Somewhat similar trends are
observed in these diurnal courses; the FQE decreased from morning to
afternoon hours, with a recovery after 4 pm in the case of PSI and with a
small rise for PSII around the solar noon. It is worth noting, that these
diurnal courses are impacted by a higher noise, originating mainly from
the quality of red SIF radiance measurements.

e Structural canopy parameters relevant for spatial retrieval of FQE

Fig. 10 illustrates how the FQE values retrieved using a one-
dimensional (1D) representations of alfalfa canopy were systemati-
cally underestimated when compared to the FQE values retrieved using
geometrically precise (realistic) 3D mock-ups. The FQE estimates
resulted in higher relative RMSE for earlier growth stages (18th of July
2021), when the canopy had more air gaps due to a lower LAI and a
smaller canopy cover fraction.

Fig. 11 shows FQE values of three selected days retrieved using DART
mock-ups with randomly distributed 3D plants but of the same LAI (top
row) and of the same canopy cover (bottom row) as the original realistic
mock-ups. The FQEs are overestimated for the first case (relative RMSE
being nearly constant for the three growth stages), whereas they are
nearly identical to FQEs retrieved using realistic mock-ups for the sec-
ond case. Thus, the correct parametrization of the alfalfa canopy cover
fraction was found to be more crucial for an accurate FQE retrieval than
parametrization of its LAL

3.2. HyPlant airborne measurements

e Retrieved leaf/canopy traits and DART simulations of TOC reflectance
image

The ANN-based retrievals of leaf, canopy, and soil properties (see
example in Appendix E) allowed for a genuine, spatially explicit, per-
pixel, biochemical and structural parametrization of the observed al-
falfa field (c.f., true-color images of the HyPlant acquisition and the
DART simulation for 22nd July 2021 in Fig. 12). The average hyper-
spectral reflectance signatures and the complementary standard de-
viations of the whole alfalfa field as acquired by the HyPlant Dual
imaging spectrometer and simulated by DART are depicted in Fig. 13.

e Retrieved FQE maps
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Fig. 8. Diurnal variations of combined PSI and PSII FQE, retrieved from FloX measurements acquired during six analyzed days (left: first three days (open canopy);
right: last three days (closed canopy)).
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Fig. 9. Diurnal variation of PSI and PSII FQE, retrieved separately from FloX measurements acquired during the six analyzed days (left: first three days (open
canopy); right: last three days (closed canopy)).
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The method in paragraph 2.2.3 allowed for finding a close agreement
between the DART simulated TOC SIF radiance and the HyPlant SIF
radiance images. Two examples from SFM and SFMNN are shown in
Appendix F. Fig. 14 presents the maps of FQE values for both PSI and
PSII together, retrieved using the TOC SIF radiance produced by SFM
and SFMNN, while Fig. 15 depicts their respective histograms for four
HyPlant acquisitions captured on 17th, 20th, 21st, and 22nd July 2021.
Visually, one can say that the FQE maps of SFM inherited the noise and
the artefacts of the input TOC SIF radiance maps, while FQE based on
SFMNN is spatially more consistent, as it inherited a less noisy spatial
pattern. Due to imperfect spatial co-registration between hyperspectral
reflectance and SIF images, few outlying FQE values appeared, espe-
cially at borders of the alfalfa field. These outliers were removed based
on thresholds of their z-score (z > 60, with ¢ the standard deviation of
the FQE map) for plotting the histograms and computing the coefficient
of variation (CV).

Finally, Fig. 16 shows scatterplots between SFM and SFMNN TOC SIF
radiance and their corresponding retrieved FQE values for the same four
HyPlant overflights.

4. Discussion
4.1. Removed impact of confounding factors

The temporal (diurnal) and spatial (local) variations of the steady-
state, light-adapted FQE at the level of photosystems were successfully
retrieved for an alfalfa crop. Similarly to previous studies (e.g., Amoros-
Lopez et al., 2008; Hu et al., 2023), the diurnal variation of TOC SIF
radiance (Figure 1) was found to be driven mainly by the PAR diurnal
variation (Figure 2). Our downscaling approach, using DART-Lux 3D
radiative transfer (Wang et al., 2022) simulating TOC SIF (Regaieg et al.,
2023), allowed us to extract the physiological part of SIF signal. The
physical modeling of SIF (ie., 3D induction by APAR, emission by
photosystems and leaves, and propagation through canopy) removed
the impact of confounding factors, specifically, spatiotemporally
changing intensity of PAR, complex canopy architecture combined with
changes in sun-canopy-sensor geometry, as well as SIF absorption and
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scattering by plant leaves, stems, and bare soil beneath them. This is
obvious when comparing maps of TOC SIF and FQE, retrieved from
HyPlant observations. While the canopy SIF radiance (Fig. 3) is spatially
varying, the spatial pattern of FQE (Fig. 14) is homogeneous, suggesting
a spatially uniform photosynthetic performance of plants of the inves-
tigated alfalfa variety. Geometrically regular patches of spatially varying
FQE retrieved from the SFM product were inherited from the SFM
computation of SIF radiance (c.f. left columns of Fig. 3 and Fig. 14), and
not caused by the environmental and canopy confounding factors. The
comparison of TOC SIF radiance histograms (Fig. 4) with FQE histo-
grams after SIF downscaling (Fig. 15) revealed narrower and more bell-
shaped Gaussian distributions due to the minimized impact of canopy
confounding factors. Additionally, the coefficient of variation (CV) of
FQE estimates was lower than CV of SIF TOC radiance for the HyPlant
overflights on 20th, 21st and 22nd July. This was not the case in the
dataset recorded on 17th July, which corresponds to an earlier growth
stage (i.e., a lower canopy cover fraction), where the SIF radiance CV
was lowest due to the bare soil impact. On the one hand, it seems that the
effect of our SIF downscaling is less pronounced in results of the SFM
method, as its SIF TOC radiance CV was already high, and histogram was
bell-shaped (Fig. 4). This can be explained by a higher spatial noise of
the SFM SIF radiance (see Fig. 3). Since SFMNN produced a less noisy
and more spatially consistent distribution of TOC SIF radiance, its FQE
maps show, compared to the SFM FQEs, no spatial artefacts. On the
other hand, systematically higher values of TOC SIF radiance found for
the SFMNN method were also propagated to the FQE estimates. The
relative differences between the SFM and SFMNN SIF radiances and
their FQE estimates were found to have similar proportions, which
might be explained by their near-linear relationships, and is shown in
Appendix G.

4.2. Impact of the canopy structure representation

Our canopy structure sensitivity analysis showed that use of 1D
instead of 3D crop representations resulted in an underestimation of FQE
(Fig. 10). The underestimation is a direct consequence of the TOC SIF
radiance overestimation, caused by neglection of foliage shadowing,
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Fig. 12. True color composites for the alfalfa field sensed by the HyPlant Dual
hyperspectral sensor during the overflight on 22nd July 2021 (a) and simulated
by DART-Lux (b), using the scene parameters retrieved from the hyper-
spectral image.
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Fig. 13. Mean reflectance signatures (+ standard deviation (shaded areas))
extracted from HyPlant acquisition and corresponding DART simulation of the
investigated alfalfa crop field pixels on 22nd July 2021.

clumping, and missing canopy gaps exposing bare soil. This leads to
overestimations of both the PAR absorption by plants and the canopy SIF
escape (Boitard et al., 2023; Malenovsky et al., 2021; Regaieg et al.,
2021). The FQE underestimation was more pronounced in earlier
growth stages that are characterized by a lower canopy cover fraction.
Since bare soil does not emit SIF and only scatters SIF radiation
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Fig. 14. FQE maps derived from HyPlant SFM (left column) and SFMNN (right
column) retrieved TOC SIF radiance data, acquired on 17th, 20th, 21st, and
22nd July 2021.

originating from the leaves, its contribution to total at-sensor SIF radi-
ance is, compared to vegetation, much lower. Consequently, the DART
canopy SIF radiance simulated using 1D homogeneous leaf layers fully
covering the soil is higher compared to spatially explicit 3D canopies
with air gaps (Malenovsky et al., 2021; Regaieg et al., 2021, 2023). The
canopy cover fraction is a key variable for accurate simulation of SIF
radiance and subsequent estimation of FQE. This finding was confirmed
by results in Fig. 11, demonstrating that, compared to original genuine
canopies, canopies with randomly distributed plants of the same canopy
cover but different LAI resulted in a lower relative RMSE of the FQE
estimates than canopies of the same LAI but varying canopy cover.
Therefore, before the HyPlant FQE retrievals, we estimated the canopy
cover fraction along with leaf biochemical traits impacting leaf optical
properties in the 400-850 nm spectral range and with a coefficient
proportional to actual soil brightness. The strong impact of the canopy
cover fraction is highlighted in scatterplots of Fig. 16, suggesting that
FQE could be approximated from TOC SIF radiance by multiple linear
functions fitted per given canopy cover fraction.
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Fig. 16. Scatter plots of TOC SIF radiance vs. FQE retrieved from SFM and SFMNN TOC SIF radiance datasets acquired by HyPlant on 17th, 20th, 21st, and 22nd

July 2021.

4.3. Performance assessment of the downscaling approach

To assess performance of our downscaling approach, we compared
leaf fluorescence efficiencies at 760 nm, computed using the Fluores-
cence Correction Vegetation Index (FCVL; Yang et al., 2020), with the
photosystem-level diurnal FQE values retrieved from FloX measure-
ments. Despite the fact that the two quantities have different physical
units and represent different levels of downscaling, we found statisti-
cally significant linear relationships (R > 0.8) for all six measurement
days (see Appendix H). This finding indicates a temporally constant
anatomy of the alfalfa leaves, impacting leaf transfer of SIF during the
investigated days linearly. It also indicates that the inner structure of
leaves is not, in the case of this crop, the major SIF confounding factor. A
similar diurnal variation in leaf-level fluorescence efficiency at 760 nm
was found for a maize canopy by Yang et al. (2020). Moya et al. (2019)
and Loayza et al. (2023) described the diurnal course as “M-shaped”,
having the second afternoon peak of a lower amplitude after the first
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maximum occurring in the morning. Additionally, the diurnal trends of
FQE retrieved from FloX measurements on 20th, 21st, and 22nd July
2021 (Fig. 8) are in agreement with leaf SIF efficiencies retrieved from
drone and HyPlant observations of barley varieties by Bendig et al.
(2025). Their diurnal courses showed low stagnating values from late
morning until afternoon, followed by a slight increase in SIF efficiencies
after 3.00 pm of the local time.

Our FQE estimates were found to be in line also with typical fluo-
rescence yield diurnal variation measured with active chlorophyll
fluorescence instruments (ESA, 2015), for instance, with SIF yields of
potato crops observed under sunny conditions (Loayza et al., 2023), pea
and mint canopies (Moya et al., 2019), and sunflower and hibiscus
canopies (Amoros-Lopez et al., 2008). Hence, to further understand the
FQE temporal photosynthetic dynamics, we compared their values with
the photosynthetic yield of PSII measured for sunlit leaves with a
miniaturized pulse-amplitude modulated photosynthesis yield analyzer
(Mini-PAM) (Bilger et al., 1995). The scatterplot of the photosynthetic
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yield of PSII averaged for sampled sunlit leaves vs. the retrieved FQE
linearly interpolated for the corresponding time (Appendix I), reveals a
changing leaf energy dissipation dynamic throughout the day, as pre-
viously reported by Wieneke et al. (2022), Marrs et al. (2020), and van
der Tol et al. (2014). While a positive correlation, associated with lower
leaf temperatures, was observed in the morning, it turned negative in the
afternoon, in correspondence with higher leaf surface temperatures. The
positive morning relationship can be attributed to no-stress conditions
until the solar noon, when the high irradiance stress conditions resulted
in a downregulation of PSII photosynthetic yield. This downregulation is
associated with an increase in the non-photochemical quenching (NPQ)
protective mechanisms, resulting in a negative FQE-photosynthesis yield
relationship. A similar trend was observed during a summer heatwave
by Martini et al. (2022).

4.4. Separate estimation of PSI and PSII FQEs

We also estimated the diurnal FQE courses of PSI and PSII from red
and far-red SIF radiance peaks separately, by coupling DART with an
older version of the Fluspect model using FQE values per photosystem
and accepting the assumption that red SIF emission is associated mainly
with PSII (Franck et al., 2002; Iriel et al., 2014). Since the red TOC SIF
retrieval method is technically challenging and subjected to an intensive
chlorophyll reabsorption (Liu et al., 2020; Wu et al., 2024), it is usually
accompanied by a higher uncertainty than the far-red SIF retrieval
(Cendrero-Mateo et al., 2019; Duan et al., 2022; Rossini et al., 2016).
This can explain the higher noise observed in diurnal courses of FloX red
SIF when compared to the far-red SIF radiance (Figure 1). Likewise, the
estimated FQE of PSII inherited the uncertainties of the red SIF radiance,
which then propagated into the complementary FQE estimates of PSI
(Fig. 12). Despite the noisiness, red TOC SIF has shown in some studies a
high potential for GPP estimation and outperformed in some studies far-
red SIF (Duan et al., 2022; Liu et al., 2020; Wu et al., 2024). Recently,
the reabsorption-corrected red SIF demonstrated a good potential for
tracking drought and heat stress (Wieneke et al., 2024). Therefore, the
separately retrieved red and far-red FQEs should be further investigated,
as they might be differently sensitive and, hence, suitable for detection
of early plant stress events and phenological changes.

4.5. Limitations and potential applications

As discussed in Section 4.1, our downscaling method allows to
remove the impact of confounding impacts and normalize the SIF
measurements. Although the findings discussed in Section 4.3 suggest
satisfactory validity of the method, a proper validation requires simul-
taneous measurement of photosystem-level FQE of a representative
number of leaves, which is practically challenging. The leaf-level FQE
could be used as approximation, if a high-throughput instrument
capable of measuring about 40-50 leaf optical properties per hour,
would be available.

It is important to mention that the potential diurnal variability in leaf
angular distribution (LAD) (Rosa and Forseth, 1996) was not considered
in our approach, as LAD was defined in each plant 3D object manually
based on photographs of representative plants. This limitation should be
addressed in the future by including in the DART scene parametrization
3D plant representatives with diurnally varying leaf angular
distributions.

The development of this method was motivated by a provision of
standardized photosystem-level information from TOC SIF data, directly
linked to the photosynthetic activity. This extracted information is
comparable across the different spatial and temporal scales of the
observation, the canopy structure, and the atmospheric condition, and
could be, therefore, used to establish a stronger link between SIF and the
vegetation gross primary production the estimation of vegetation GPP
(Liuetal., 2020) as well as stress detection, e.g., drought monitoring (Lin
et al., 2022).
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5. Concluding remarks

In this study, we developed a novel method for scaling vegetation
canopy observations of SIF radiance down to the level of photosystems
inside chloroplasts based on 3D radiative transfer modeling of DART
coupled with the leaf SIF model Fluspect-Cx. The method was success-
fully applied on in-situ FloX SIF temporal measurements, revealing
diurnal FQE trends, and on airborne HyPlant SIF images, mapping FQE
spatial patterns of an alfalfa crop. We found that our FloX FQE diurnal
trends correspond with previously published diurnal courses of the leaf-
level SIF efficiency and the PSII fluorescence yield. In contrast to
HyPlant TOC SIF radiance, the retrieved FQE maps appeared to be
spatially more homogeneous, which corresponds with a spatially uni-
form photosynthetic performance of the investigated mono-species crop
of a single alfalfa variety. These results demonstrate that DART 3D
modeling can be used to remove the effects of confounding factors by
physically simulating their impacts on TOC SIF radiance, which allows
for subsequent extraction of the physiological part of measured canopy
SIF signal. As the DART modeling was, except uncertainties related to its
parametrization, noiseless, noise and spatial artefacts of retrieved
photosystem level FQE estimates were predominantly inherited from the
input top-of-the-canopy SIF radiance data. Future methodological im-
provements should include more genuine representation of 3D vegeta-
tion canopy, especially a consideration of the canopy leaf angular
variability as response to spatiotemporally varying solar irradiation
conditions. Finally, the method is expected to be tested on more spatially
heterogenous and architecturally complex canopies, e.g., diverse forest
stands, where the 3D structure and non-photosynthetic canopy surfaces
(e.g., woody components) have been shown to impose a great impact on
spatial anisotropy of TOC SIF signal (Malenovsky et al., 2021; Regaieg
et al., 2021).
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Appendix A: Study site location
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Fig. Al. Study site location (Figure created using OpenStreetMap and shapefiles from https://diva-gis.org/).

Appendix B: Example of total, direct and diffuse DART simulated irradiance (19th July 2021 at 10 am local time)
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Fig. B1. Total, direct, and diffuse irradiance simulated in DART using retrieved atmospheric optical depths for 19th July 2021 at 10 am (local time).

Appendix C: Soil reflectance spectra
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Fig. C1. Reflectance spectra of the dark and bright soils, and their average.
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Appendix D. Pseudo code for full field mock-up creation
Input parameters

e Maps of estimated canopy traits
e Prebuilt list L of alfalfa fields of 1.7 x 1.7 m? (HyPlant pixel size) having different canopy cover fractions (Fcov) L = [0.05 to 0.95 with a step of
approximately 0.05]

Pseudo code:

for each HyPlant image pixel (x,y) of the alfalfa field do:

if 3field € L such that |Fcov(field) — Fcov(x,y) | < 0.01:

add a copy c of field to the mock-up at position (x,y)

set leaves properties of ¢ and soil optical properties at (x,y)
else:

find f € L with smallest Fcov such as Fcov(f) > Fcov(x,y)
repeat

Randomly remove one plant from f to create a new f compute
Compute Fcov(f')

Addf to L

f<f

until (|Fcov(f') — Feov(x,y) | < 0.01)

add a copy c of f' to the mock-up at position (x,y)

set leaves optical properties of ¢ and soil optical properties at (x,y)
end if

end for
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Appendix E: Example of leaf/canopy traits maps of the alfalfa field estimated by the best performing ANN for the HyPlant overflight on
22nd July 2021
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Fig. E1. Examples of maps of alfalfa leaf and canopy traits estimated by the best performing ANN for the HyPlant overflight on 22nd July 2021.
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Fig. E2. Example of an alfalfa field soil coefficient map estimated by the best performing ANN for the HyPlant overflight on 22nd July 2021.
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Appendix F: DART-Lux iterations of the FQE retrieval method for a Hyplant acquisition

+4.617¢6 a) Iteration 0
900 \ L
850 i
3
800 o
2 '§
750 9
51
700 B
3
650 g
50 m ;
T T T T 0
327600 327700 327800 327900
+4.617¢6 b) Iteration 1
I; 2 ,__
900 : L
850 _'s
X
800 &
D '§
750 9
8
700 8
=
<
650 2
7]
T T T 3 0
327600 327700 327800 327900
+4.617¢6 ¢) Iteration 2
|3 L —'_‘
900 \ L
850 §
=
800 -
) '§
750 9
54
700 8
3
<
650 g
7
0

T T T T
327600 327700 327800 327900

Fig. F1. DART-simulated SIF radiance images at the O2A band: a) iteration 0, simulated using a reference FQE (RMSE = 0.8862 W.m 2. pm’l.sr’l), b) iteration 1,
simulated using FQE values adjusted based on iteration 0 (RMSE = 0.0762 W.m~2.um1.sr 1), and c) iteration 2, simulated using FQEs readjusted based on iteration
1 (RMSE = 0.0064 W.m 2. um~L.sr™1). RMSEs were computed with the SFMNN-retrieved HyPlant O,A SIF radiances from 22nd July 2021 as the reference.
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Fig. F2. DART-simulated SIF radiance images at the OA band: a) iteration 0, simulated using a reference FQE (RMSE = 0.4609 W.m’z.pm’l.sr’l), b) iteration 1,
simulated using FQE values adjusted based on iteration 0 (RMSE = 0.0440 W.m~2.um~1.sr 1), and c) iteration 2, simulated using FQEs readjusted based on iteration
1 (RMSE = 0.0040 W.m 2. um~L.sr™1). RMSEs were computed with the SFM-retrieved HyPlant O.A SIF radiances from 22nd July 2021 as the reference.
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Appendix G: Comparison between SFM and SFMNN SIF radiance at 760 nm and FQE retrieved from HyPlant overflights
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Fig. G1. Scatterplots of SIF radiance calculated using the SFM and SFMNN methods, and of FQE retrieved from SFM and SFMNN SIF radiance values for four HyPlant

acquisitions obtained on 17th, 20th, 21st, and 22nd July 2021.

Appendix H: Relationship between the FCVI-estimated leaf-level fluorescence efficiency and the photosystem-level FQE
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Fig. H1. Regressive relationship between leaf-level fluorescence efficiency at 760 nm, estimated using the reflectance index FCVI and the photosystem-level FQE.
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Appendix I: Correlations between measured PSII photosynthetic activity and estimated FQE

0.550

0.525 1

0.500 1

0.475 1

0.450 1

0.425 4

Measured Photosynthetic Yield (PSII)

Before 2 pm: R = 0.8732
After 2 pm: R =-0.8213

° 34
09:29
33 .
]
o
32
!
318
&
30
2
S
29 §
-
28

0.011 0.012

0.013 0.014

Retrieved FQE

Fig. I1. Scatterplot of the FQE values retrieved from FloX measurements plotted against the photosynthetic yields for photosystem II (PSII) measured with a
MiniPAM device. The two red lines (linear fitting) indicate a positive correlation before and a negative correlation after 2.00 pm, respectively (a local time is noted
next to datapoints). R is the coefficient of correlation. The color of datapoints indicates the leaf surface temperature as measured by a MiniPAM contact probe. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Appendix J. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2025.114636.

Data availability
Data will be made available on request.
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