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Solar-induced chlorophyll fluorescence (SIF) has shown promise in estimating gross primary production 
(GPP); however, there is a lack of global GPP datasets directly utilizing SIF with models possessing clear 
expression of the biophysical and biological processes in photosynthesis. This study introduces a new 
global 0.05° SIF-based GPP dataset (CMLR GPP, based on Canopy-scale Mechanistic Light Reaction model) 
using TROPOMI observations. A modified mechanistic light response model was employed at the canopy 
scale to generate this dataset. The canopy qL (opened fraction of photosynthesis II reaction centers), 
required by the CMLR model, was parameterized using a random forest model. The CMLR GPP estimates 
showed a strong correlation with tower-based GPP (R2 = 0.72) in the validation dataset, and it showed 
comparable performance with other global datasets such as Boreal Ecosystem Productivity Simulator 
(BEPS) GPP, FluxSat GPP, and GOSIF (global, OCO-2-based SIF product) GPP at a global scale. The high 
accuracy of CMLR GPP was consistent across various normalized difference vegetation index, vapor 
pressure deficit, and temperature conditions, as well as different plant functional types and most months 
of the year. In conclusion, CMLR GPP is a novel global GPP dataset based on mechanistic frameworks, 
whose availability is expected to contribute to future research in ecological and geobiological regions.

Introduction

Terrestrial gross primary production (GPP) is the largest car-
bon cycle flux [1]. Therefore, quantifying GPP is important for 
tracking carbon budgets, projecting vegetation–climate interac-
tions, and supporting the policy decisions regarding future land 
management. However, mapping GPP at a global scale remains 
a challenging task, which involves complex biophysical and 
biochemical processes across different spatiotemporal scales [2].

To date, numerous attempts have been made to produce 
global GPP datasets. Traditional GPP products are usually 
generated using light use efficiency (LUE) framework, machine 
learning methods, or process-based models. Models based on 
the LUE framework represent GPP as the product of absorbed 
photosynthetically active radiation (APAR) and LUE. In these 
models, estimating LUE is crucial but challenging work because 
this parameter cannot be directly measured at a global scale. 
As a result, various approaches to model LUE have been devel-
oped, leading to different global GPP products [3,4]. However, 
these methods mainly rely on environmental conditions or 
surface reflectance information to simulate LUE, lacking direct 
physiological information and thereby introducing uncertain-
ties [5]. GPP estimation based on machine learning methods 
avoids the estimation of LUE and can easily reach high accuracies 
when the models are fed with large, unbiased datasets. However, 
due to the biased distribution of flux towers, the reliability of 

GPP products generated in this way is often doubted in regions 
that are poorly represented by the samples [2]. In addition, 
machine learning models are hard to explain in a mechanistic 
way. In comparison, GPP estimated using process-based mod-
els are supported by solid mechanistic foundations. However, 
process-based models are usually very complicated. They often 
require substantial time and computing resources to generate 
a long-term global dataset. Due to the lack of direct photosyn-
thetic signals as inputs, all of the models above estimate GPP 
somewhat indirectly, indicating the necessity to find a more 
direct and simple way to estimate GPP.

Recently, the emergence of solar-induced chlorophyll fluo-
rescence (SIF) retrieval techniques has provided opportunities 
for the estimation of global GPP. SIF is an electromagnetic sig-
nal emitted by excited photosynthetic pigments during plant 
photosynthesis [6]. It exhibits a strong correlation with APAR 
and GPP at multiple spatial and temporal scales [7,8]. Due to 
the physiological information it contains, SIF outperforms 
many vegetation indices in tracking the photosynthetic dynam-
ics, particularly under stressed conditions [9] or in evergreen 
ecosystems of which the vegetation structure shows less variation 
[10]. Consequently, SIF is considered a proxy for photosynthesis 
and widely used in regional and global studies. Furthermore, a 
study has shown that SIF alone can provide a rough estimate of 
global GPP, leading to the generation of a global GPP dataset 
(a GPP dataset based on global, OCO-2-based SIF product 
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[GOSIF] GPP) based on the empirical linear relationship 
between GOSIF (a reconstructed SIF dataset based on machine 
learning methods) and GPP [5].

However, the variability in the SIF–GPP relationship intro-
duces uncertainty to GPP estimation in empirical SIF-based 
models. An increasing number of studies have demonstrated 
that SIF and photosynthesis do not always change in sync, and 
their quantitative relationship is not constant [11]. Changes in 
environmental and physiological factors can modulate the rela-
tionship between SIF and GPP [12,13]. SIF typically shows high 
consistency with APAR [14], indicating that SIF can be used to 
avoid the estimation of APAR and yield good performance in 
GPP estimation. Mechanistically, SIF and GPP are produced 
during different periods of photosynthesis. SIF is emitted during 
the light reaction, while GPP depends on the Calvin cycle in the 
carbon reaction. This discrepancy may be the physiological basis 
for their dynamic quantitative relationship. At the canopy scale, 
observations from flux towers demonstrate that SIF is less sensi-
tive than GPP to stomatal control and changes in ambient envi-
ronments [13,15]. Additionally, there are discrepancies in the 
peak time and early spring onset between SIF and GPP [13,16].

During the fall transition and winter, the quantitative rela-
tionship between SIF and GPP changes with temperature, show-
ing nonlinearity at the seasonal scale [17,18]. Satellite-based 
studies have also demonstrated that the observed SIF-to-GPP 
ratio is seasonally dependent and influenced by moisture con-
ditions on a global scale [19,20]. The canopy structure plays a 
role in the link between SIF and GPP due to its impact on the 
escape possibility of SIF photons (fesc) [21], thus partially 
explaining the biome-specific SIF–GPP relationship. While 
studies have shown a more consistent correlation between total 
SIF emitted by the photosystems and GPP across biomes [22], 
further quantitative study research has indicated variations in 
the relationship between total SIF and GPP across different 
developmental stages [12]. Consequently, relying solely on 
empirical models and SIF is not sufficient for accurate GPP 
estimation. To improve the precision of GPP estimation using 
SIF, a step forward should be taken from traditional empirical 
models by integrating SIF with auxiliary environmental infor-
mation within a state-of-the-art mechanistic framework.

Chang et al. [23] have proposed a mechanistic light response 
(MLR) framework to quantitatively describe the coupling 
between SIF and GPP, enabling a more mechanistic estimation 
of GPP using SIF. According to this framework, the electron 
transport rate (ETR), which serves as a bridge between SIF and 
GPP, can be estimated using SIF emitted by the photosystem 
II complex (SIFPSII) and active fluorescence parameters such 
as the opened fraction of PSII reaction centers (qL) and the 
maximum photochemical quantum yield of PSII (ΦPSIImax). 
Based on the estimation of ETR, GPP can be further estimated 
using the description of carbon reaction in the Farquhar–von 
Caemmerer–Berry (FvCB) model [24,25].

In this study, our objective was to generate a mechanistic 
global GPP dataset based on the MLR framework using the 
TROPOMI SIF dataset (TROPOSIF) [26]. We employed the 
random forest model to incorporate environmental factors 
(such as air temperature, vapor pressure deficit [VPD], etc.) 
and canopy structure information (including leaf area index 
[LAI], clumping index, etc.) into the parameterization process. 
The resulting dataset, called CMLR GPP (GPP based on can-
opy-scale MLR model), was generated at a global scale with a 
resolution of 0.05°, covering the period from 2018 to 2021.

To assess the accuracy of the CMLR GPP dataset, we con-
ducted validation and comparison exercises against GPP values 
obtained from eddy covariance towers and other global prod-
ucts. The performance of the model was also evaluated across 
different plant functional types (PFTs), months, and varying 
conditions of normalized difference vegetation index (NDVI), 
temperature, and water availability. Additionally, for the pur-
pose of global mapping, we provided a composite GPP dataset 
generated using an 8-day moving window. This novel dataset 
offers a new opportunity to investigate global photosynthesis 
based on actual SIF observations (as opposed to spatially down-
scaled or reconstructed SIF data), thereby ensuring more reli-
able physiological interpretations in future applications.

Materials and Methods

Dataset
TROPOMI SIF and GPP datasets
In this study, we utilized the global SIF product obtained from 
the Copernicus Sentinel-5P TROPOMI mission, referred to as 
TROPOSIF, covering the period from May 2018 to December 
2021 [26]. The sampling strategy of the TROPOMI satellite sup-
ports SIF retrieval with a nadir mode footprint size of 3.5 km × 
5.5 km every day (before August 2019, 3.5 km × 7.5 km). The 
TROPOSIF dataset employed a data-driven approach for SIF 
retrieval and provided SIF values within the 743- to 758-nm 
(SIF743) and 735- to 758-nm (SIF735) fitting windows. Alongside 
SIF retrievals, the dataset also included corresponding SIF 
errors, top-of-atmosphere radiance (within the fitting window), 
reflectance, land cover information, cloud fraction, and imag-
ing conditions (such as acquisition time, location, solar zenith 
angle, view zenith angle, and solar azimuth angle) for each SIF 
sounding. In line with recommendations in the literature [26], 
we selected SIF743 for this study.

GPP observations from eddy covariance flux towers were 
utilized for model parameterization and validation. The flux 
tower data needed to overlap with the temporal coverage of 
TROPOMI. Hence, we gathered and filtered flux data shared 
under CC-BY 4.0 policy from AmeriFlux (https://ameriflux.
lbl.gov/), ICOS (https://www.icos-cp.eu/), TERN (https://www.
tern.org.au/), and TPDC (https://data.tpdc.ac.cn/) [27,28] to 
obtain GPP observations from 293 towers (sites are listed in 
Supplementary file E1). For sites where only raw data (net eco-
system exchange data and other environmental observations) 
were provided, we employed gap filling and daytime partition-
ing methods [29] using the REddyProcWeb tool [30] to esti-
mate GPP. As we aimed to estimate GPP based on instantaneous 
SIF observations, the GPP estimation in this study represents 
the photosynthesis intensity at the overpass time of TROPOMI 
(unit: μmol m−2 s−1). Thus, we matched half-hourly GPP with 
SIF soundings within a 3-km radius around the flux tower and 
selected the closest GPP records based on the SIF acquisition 
time. These matched TROPOMI SIF and tower GPP observa-
tions were separated into a training dataset (70% of the total 
dataset, used in the model establishment process) and a valida-
tion dataset (30% of the total dataset, used in the model valida-
tion process). In addition, data from a process-based GPP 
product (Boreal Ecosystem Productivity Simulator [BEPS] GPP) 
[31], a data-driven GPP product (MODIS FluxSat GPP) [32], 
and an empirical SIF-based GPP product (GOSIF GPP, v2) [5] 
were also collected for comparison with CMLR GPP. Specifically, 
we extracted the values in these global GPP products based on 
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the locations of 293 flux sites and compared their accuracy and 
time series. We converted the units (from gC m−2 day−1 to μmol 
m−2 s−1) of the 3 reference datasets and transformed their data 
into instantaneous values at the TROPOMI overpass time 
using the cosine of the solar zenith angle, as it predominantly 
determines diurnal changes in GPP and APAR [33,34]. Further 
details regarding this conversion can be found in Text S1.

ERA5 reanalysis dataset
We utilized the fifth-generation European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis dataset, ERA5 
hourly data on single levels from 1940 to present [35], for model 
parameterization and evaluation under various conditions. This 
dataset provided variables such as surface solar radiation down-
wards, 2 m air temperature, and 2 m dewpoint temperature. 
There variables were selected and resampled to a 0.05° resolu-
tion using linear interpolation. Subsequently, the environmen-
tal variables were matched with SIF soundings based on the 
location and acquisition time. Photosynthetically active radia-
tion (PAR) was derived from the surface solar radiation down-
wards (unit: J m−2) by multiplying it by 0.46 and converting 
the unit to μmol m−2 s−1 [36]. VPD was calculated using the 
air temperature and dew temperature with the following equa-
tion [37,38]:

where T is the air temperature (unit: °C) and Td is the dew 
temperature (unit: °C). The unit of VPD is kPa, and it is con-
verted into hPa in this study. In summary, we matched the 
ERA5 data with SIF soundings to describe the light, thermal, 
and moisture condition for each data record.

Soil background albedo, nadir surface reflectance, and 
LAI/fPAR datasets
We used a soil background albedo dataset sourced from MODIS 
satellite products [39] in conjunction with the MODIS Nadir 
Bidirectional Reflectance Distribution Function-Adjusted 
Reflectance dataset (MCD43C4 v6.1) [40] to consider the 
impact of soil background and compute vegetation indices in 
our study. In comparison to the reflectance data provided by 
TROPOSIF, the MCD43C4 reflectance data underwent atmo-
spheric correction and was adjusted to the nadir direction. 
Here, we followed a previous study [41] to get NIRv (the near-
infrared reflectance of vegetation). NIRv is the product of NDVI 
and near-infrared reflectance, so we calculated NDVI using the 
MCD43C4 reflectance data and then multiplied it with reflec-
tance data from TROPOMI in the SIF fitting window (provided 
by TROPOSIF).. The MODIS Leaf Area Index/FPAR 8-Day L4 
dataset (MOD15A2H) was employed to acquire fraction of 
photosynthetically active radiation (fPAR) for estimating fesc 
(calculated as the ratio of NIRv to fPAR) [42]. Additionally, the 
LAI information contained in this dataset was utilized to fur-
ther account for the impact of canopy structure.

Other datasets
In this study, we utilized a Köppen–Geiger climate classification 
map [43] to determine the general climate condition associated 
with each observation. To account for the spatiotemporal varia-
tions in CO2 concentration, we also used the latest gridded 
monthly OCO-2 carbon dioxide assimilated dataset (OCO2_
GEOS_L3CO2_MONTH) [44]. Additionally, we employed a 

MODIS clumping index dataset [45] to calculate the effective 
LAI (LAI multiplied by the clumping index). All of these data-
sets were resampled to a resolution of 0.05° and extracted to 
match the SIF soundings.

To assist in distinguishing observations taken under clear-
sky and overcast conditions for data quality control, we calcu-
lated the clearness index (CI). The CI is influenced by the 
diffused light fraction and reflects the clear-sky condition cor-
responding to each measurement [46]. It is defined as the ratio 
of the observed PAR to theoretical PAR at the top of the atmo-
sphere (PARTOA). The PARTOA is estimated by multiplying the 
solar constant (S0, 1,367 W m−2) by the cosine of the solar 
zenith angle.

Determining GPP using an MLR model
MLR model and its application at the canopy scale
The MLR model is a mechanistic model describing the quan-
titative relationship between SIF and GPP [25]. According to 
this framework, GPP can be estimated using the following 
equation:

where Cc is the CO2 partial pressure in the chloroplast, Γ* is 
the photorespiratory compensation point of CO2, SIFPSII is the 
total full band SIF emitted by photosystem II, and kDF is the 
ratio of kD to kF. In this study, we adopted a value of 9 for kDF 
based on the work of Liu et al. [47]. The parameter ΦPSIImax, 
representing the maximum quantum efficiency of the photo-
chemical reaction in healthy plants under unstressed condi-
tions (i.e., the maximum value during summer), was taken as 
0.83. Correspondingly, qL denoted the fraction of open PSII 
reaction centers (the denominator includes both active and 
inactivated components).

Equation 2 illustrates the method for estimating GPP in the 
original leaf-level MLR model [25]. To apply the MLR model 
at the canopy scale, a conversion is necessary from the direc-
tional observed SIF at a specific wavelength (SIFobs) to SIFPSII. 
This conversion is accomplished using the following equations 
[47]:

where SIFPSII_ps is the total PSII SIF at the photosystem level at 
the observed wavelength, fesc is the escape probability from 
leaf surface to the top of canopy, fLp is the escape probability 
from the photosystems to the leaf surface, fc(λ) is the factor 
converting SIF at observed wavelength to SIF at the λ wave-
length, and fPSII is the ratio of PSII SIF to the total SIF at the 
observed wavelength. In Eq. 3, h, c, λ, and NA represent the Planck 
constant, the speed of light, the wavelength, and the Avogadro 
constant, respectively. According to previous studies [48,49], 
fLp is regarded as 0.9. The determination of fc(λ) uses the first 
principal component of 6,720 photosystem-level SIF simula-
tions from the Soil Canopy Observation, Photochemistry 

(1)VPD = 0.611 × e
17.5×T

240.978+T − 0.611 × e
17.5×Td

240.978+Td

(2)GPP=
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∗

4Cc+8� ∗

(

1+kDF
)

qL×�PSIImax
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SIFPSII

(3)
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and Energy fluxes (SCOPE) model, as described in the litera-
ture [47]. Additionally, fPSII is determined using the SCOPE 
simulations, which encompass various leaf properties, canopy 
structures, and geometry conditions. By dividing the PSII SIF 
simulations by the total SIF (including both PSII and PSI SIF) 
simulations, a range of fPSII values at the observation wave-
length are obtained and subsequently averaged. In this study, 
we used the SIF743, and therefore, fPSII was set as 0.6819 to 
derive the PSII SIF at the 743-nm wavelength. By combining 
Eqs. 2, 3, and 4, GPP was estimated based on top-of-canopy 
SIF observations.

Parameterization of qL
As a highly dynamic variable, qL plays a crucial role in the MLR 
model [25]. Leaf-scale measurements have shown that qL is 
mainly influenced by ambient light conditions and exhibits a 
negative exponential relationship with PAR [50]. However, 
unlike leaf-scale studies, qL in this research represents a canopy-
scale concept that reflects the community-level outcome within 
a pixel. Consequently, its environmental response may differ 
from leaf-scale findings, posing challenges in the direct deter-
mination of qL values under various conditions.

In this study, qL is linked not only to the redox state of active 
PSII reaction centers (representing the fraction of open PSII 
reaction centers to the active PSII reaction centers), but also to 
the fraction of active PSII reaction centers in relation to the 
total number of PSII reaction centers. For this reason, environ-
mental factors that induce growth pressure or even stress can 
impact the magnitude of qL. For a pixel in satellite products, 
both canopy structure and soil background can provide insights 
into the vegetation coverage and density in a given region, 
which potentially influence light interception and redistribu-
tion within the canopy. Because the canopy is not a simple 
2-dimensional plane, the actual light conditions driving overall 
canopy photosynthesis differ from the light at the canopy top, 
although the former is constrained by the latter. Thus, the soil 
albedo and canopy structure have potential impacts on canopy 
qL, making its response different from leaf-scale results. SIF can 
also reflect light interception within the canopy and aid in 
parameterizing canopy qL due to its high correlation with 
APAR. Furthermore, SIF contains physiological information 
about the vegetation, which can be utilized to account for the 
physiological-related variation in qL. All of the factors above 
contribute to the variation in qL and should be considered in 
its parameterization.

Given the limited knowledge and complexity in determining 
canopy qL, we employed a machine learning method for its 
parameterization. First, we calculated canopy qL values using 
Eq. 2 based on the matched dataset comprising TROPOMI SIF 
and tower GPP. Then, we took 70% of this matched dataset to 
train a random forest model, and the remaining 30% data 
served as the validation dataset. Considering the potential con-
tributions of environmental factors, canopy structure, land 
cover, geospatial location, and climate zones, we tested various 
input combinations and ultimately selected variables including 
total SIF, solar zenith angle, air temperature, PAR, VPD, CO2 
concentration, NDVI, soil albedo, effective LAI (eLAI), land 
cover, Köppen-Geiger climate class, and the position of sound-
ings as the model inputs to estimate canopy qL. Notably, these 
variables were selected to avoid underfitting and improve the 
estimation accuracy, rather than for explanatory purposes. 
Therefore, this machine learning model is not suitable for 

explaining the individual contributions of each factor to qL. To 
ensure the model learned from data under different vegetation 
cover conditions, we also randomly augmented the data with 
both high NDVI and low NDVI before training.

Parameterization of Cc in the carbon reaction
For simplicity, Cc was assumed to be equivalent to Ci (intercel-
lular CO2 concentration), and the parameterization of Ci was 
accomplished using method based on eco-evolutionary opti-
mality theory [51–53]:

In this equation, Ca represents the atmospheric CO2 concen-
tration (unit: Pa), K represents the Michaelis–Menten coefficient 
for photosynthesis, β is a constant representing the unit cost 
ratio (taken as 146), and η* is the relative water viscosity. Both 
K and Γ* were estimated using air temperature, and their units 
were converted into Pa. The calculation was performed with the 
help of functions in the rpmodel package of R language [53].

Quality control, model validation, and data format
Stringent quality control measures were implemented prior to 
model training. Given the inherent uncertainties in both satel-
lite SIF and tower-based GPP observations, errors in the cal-
culated canopy qL from these sources are inevitable. To ensure 
the reliability of the data, records with qL (calculated using 
TROPOMI SIF and tower GPP) exceeding 1 and or falling 
below 0 were excluded from the training dataset, based on the 
prior knowledge that qL values typically range from 0 to 1. 
During the training process, additional filtering criteria were 
applied to the data to enhance their reliability. These criteria 
included the following: (1) cloud fraction < 0.05, (2) CI > 0.7, 
(3) SIF error < 0.4, (4) GPP > 0, and (5) SIF > 0. In the produc-
tion of the dataset, soundings with cloud fraction higher than 
0.3, fesc lower than 0.1, and SIF lower than −0.1 were excluded. 
The quality control measures in this step were slightly relaxed 
to prevent significant spatial gaps in the output caused by exces-
sively strict filtering. The estimated GPP values were ultimately 
aggregated into 0.05° grids, and the original CMLR GPP dataset 
was generated on a daily basis.

To assess the CMLR model, we initially compared its per-
formance (the accuracy of qL and GPP estimations) against 
empirical models using the validation dataset. Subsequently, 
we matched pixels extracted from BEPS GPP, MODIS FluxSat 
GPP, GOSIF GPP, and CMLR GPP, and conducted validation 
to evaluate the model performance and patterns under different 
conditions on a global scale.

For the global mapping application, an additional composite 
dataset was generated using an 8-day temporal moving window. 
In this dataset, pixels with LAI = 0 were assigned GPP = 0. To 
address spatial gaps resulting from the absence of model inputs 
or poor data quality in certain pixels, we filled them using a 
2-dimensional Gaussian function within a 3×3 moving win-
dow, following a previous study [54]. These filling values were 
marked in the quality control layer (Table).

These 2 types of datasets (the original CMLR GPP and the 
8-day composite CMLR GPP) are all organized in the GeoTiff 
format, and the composited version contains 2 bands: the first 

(5)
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one is the GPP layer and the second one is the quality control 
layer.

Results

Spatial pattern of the CMLR GPP dataset
Figure 1 illustrates the spatial pattern of CMLR GPP on 2019 
July 29. In Fig. 1A, the global map highlights regions with high 
productivity, such as the USA Corn Belt, Amazon Rainforest, 
Congo Rainforest, and islands in Southeast Asia among others. 
In Fig. 1B and C, although there are some noisy pixels, the 
dataset effectively captures the elevated GPP in the Nile Delta 
and regions along the Mississippi River. This overall spatial 
pattern aligns with the findings of other global GPP datasets.

Comparing CMLR and empirical methods using the 
validation dataset
We conducted tests on the CMLR model and compared it with 
empirical methods using the validation dataset. As displayed 
in Fig. 2A, the GPP estimated by the CMLR model exhibits a 
high correlation with tower-based observations (R2 = 0.72), 
and the GPP estimation demonstrates an unbiased perform-
ance in both high and low ranges, without significant overes-
timation or underestimation. The majority of GPP data fall 
within the range of 0 to 25 μmol m−2 s−1, and the densest cluster 
of points in Fig. 2A is located closest to the 1:1 line. In Fig. 2B, 
there is a relatively high correlation between the estimated qL 
using the random forest model and the calculated qL based on 
the tower GPP and TROPOMI SIF observations (R2 = 0.69). 
This suggests that, for most TROPOMI overpass times, the qL 
parameter falls within the range of 0 to 0.2. Compared to the 
estimation of GPP in Fig. 2A, the estimation of qL in Fig. 2B is 
more biased. Therefore, it appears that a less satisfying R2 in 
the qL estimation does not necessarily limit the R2 in the GPP 
estimation.

Figure S1 illustrates the performances of different empirical 
models in the validation dataset. GPP estimates from all of these 
models exhibit low correlations with the tower-based observa-
tions, despite their regression lines being close to the 1:1 line. 
However, compared to the CMLR GPP estimates in Fig. 2A, the 
GPP estimates from these empirical models display more bias. 
They demonstrate significant overestimations in the low GPP 
range and underestimations in the high GPP range. Although 
this issue is less pronounced in the model based on the nonlinear 
total SIF–GPP relationship (Fig. S1D), it still exhibits a lower 
R2 than the models based on the observed SIF–GPP relation-
ship. Regarding the model comparison in different PFTs, Figs. 
S2 to S8 and Table S1 reveal that methodology employed in 
CMLR GPP shows the most significant improvement in R2 for 
evergreen forest (EF) and grassland (GRA). Additionally, this 

approach leads to the most substantial reduction in the root 
mean square error (RMSE) for cropland (CRO).

Comparing CMLR GPP with other global  
GPP products
In this section, we conducted a comparison between the CMLR 
GPP, BEPS GPP, FluxSat GPP, and GOSIF GPP by extracting 
their pixel values based on the locations of 293 flux towers. 
Figure 3 presents the validation results for these 4 datasets. 
Among these models, BEPS GPP demonstrates the highest 
RMSE (8.48 μmol m−2 s−1) and the lowest R2 value (0.36), with 
its regression line noticeably biased from the 1:1 line. On the 
other hand, FluxSat GPP exhibits a higher R2 (0.51) and a lower 
RMSE (7.26 μmol m−2 s−1) compared to BEPS GPP. GOSIF 
GPP yields similar results to FluxSat GPP, slightly outperform-
ing FluxSat GPP with an R2 of 0.51 and an RMSE of 7.09 μmol 
m−2 s−1. Among the 4 datasets, CMLR GPP exhibits the highest 
R2 (0.55), the lowest RMSE (6.69 μmol m−2 s−1), and a regres-
sion line that is closest to the 1:1 line (slope: 1.05, intercept: 
−0.21 μmol m−2 s−1).

To assess the performance of the 4 global GPP datasets in 
temporal analysis, we compared their GPP time series and pre-
sented the results for a deciduous broadleaf forest site (US-Ha1) 
and a CRO site (US-Bi2) in Fig. 4. For the US-Ha1 site, all of 
the GPP datasets successfully captured the dynamics of tower-
based GPP observations. However, GOSIF GPP showed sig-
nificant overestimation during the peak growing season from 
June to September with value surpassing above 35 μmol m−2 
s−1. At the US-Bi2 site, both GOSIF GPP and FluxSat GPP 
underestimated photosynthesis during summer, with GOSIF 
GPP showing a more pronounced underestimation. In contrast, 
CMLR GPP exhibited a high consistency with tower-based GPP 
values. We also compared these 4 datasets at the high-latitude 
evergreen needleleaf forest (ENF) sites (Fig. S9) and tropical 
sites (Fig. S10). CMLR generally shows comparable perform-
ance with the reference datasets.

Figure S11 and Fig. 5 illustrate the global averages of GPP 
and their time series across different PFTs. As shown in Fig. 
S11, CMLR GPP and GOSIF GPP generally exhibit similar pat-
terns across many PFTs, except for the EF. FluxSat GPP tends 
to yield higher values compared to CMLR GPP and GOSIF 
GPP, except for the GRA and shrubland (SH) PFTs. In CROs 
and needleleaf forests, GOSIF GPP and CMLR GPP demon-
strate high consistency, while BEPS GPP and FluxSat GPP tend 
to exhibit higher values during peak periods (Fig. 5A, C, and 
E). In broadleaf forests including both evergreen and deciduous 
forests, CMLR GPP shows relatively low values, while BEPS 
GPP, FluxSat GPP, and GOSIF GPP show similar patterns (Fig. 
5B, D, and F). However, this observation may be attributed to 
the overestimation of GOSIF GPP, as evidenced by its overes-
timation (especially in peaks) at the US-Ha1 site (Fig. 4C).

Model performance in different conditions
Figure 6 shows the pattern of model performance in the tem-
perature–VPD space. Both CMLR GPP and GOSIF GPP exhibit 
an increase in adjusted R2 (between estimated and observed 
GPP) as temperature and VPD increase. The highest adjusted R2 
values are observed when temperature ranges from 30 to 35 °C 
and VPD ranges from 30 to 35 hPa (Fig. 6A and B). The result 
for CMLR GPP also indicates a slight decrease in adjusted R2 
when VPD exceeds 30 hPa, whereas this pattern is not discovered 

Table. Flag values and their meaning in the quality control layer

Types of the pixels Value

0 Original estimates 0

1 Filling data 1

2 Missing data 255

D
ow

nloaded from
 https://spj.science.org at Forschungszentrum

 Juelich G
m

bh on February 10, 2025

https://doi.org/10.34133/remotesensing.0127


Chen et al. 2024 | https://doi.org/10.34133/remotesensing.0127 6

in GOSIF GPP. In Fig. 6C and D, as the temperature and VPD 
increase, RMSE initially increases and then decreases, which may 
be attributed to higher vegetation productivity under mild tem-
perature and moisture conditions. Comparing Fig. 6A and C 
with Fig. 6B and D, it can be inferred that the CMLR GPP 
achieves the highest adjusted R2 (0.64), but it does not show 
superiority over GOSIF GPP under cold and wet conditions 
(temperature lower than 10 °C and VPD lower than 10 hPa).

Figures 7, 8, and 9 present the model performance across 
different canopy structures (indicated by NDVI), ecosystems 

(indicated by PFT), and periods (indicated by month), respec-
tively. In Fig. 7, CMLR GPP consistently exhibits the highest 
R2 and the lowest RMSE among all NDVI conditions, while 
BEPS GPP shows the lowest R2 and the highest RMSE com-
pared to the other GPP datasets. The R2 values of FluxSat GPP 
and GOSIF GPP show similar patterns, initially increasing 
and then decreasing as NDVI rises from 0.3 to 0.8. In Fig. 8A, 
CMLR GPP demonstrates the highest R2 among the 4 GPP 
datasets for EF, GRA, and CRO. In Fig. 8B, CMLR GPP shows 
the lowest RMSE compared to other GPP datasets for EFs, 

Fig. 1. Spatial pattern of CMLR GPP on 29 July 2019 at a 0.05° resolution. (A) The global map of CMLR GPP. (B) The GPP pattern in the Nile Delta. (C) The GPP pattern in the 
Mississippi River. The 8-day composited dataset was used for global mapping.
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Fig. 2. Comparison of the CMLR estimations with the tower observations in the validation dataset. (A) Scatterplot of the estimated GPP and tower-based GPP. (B) Scatterplots 
of the qL estimated by random forest model and qL calculated using tower GPP and TROPOM SIF. The color of dots represents the data density, and dots with a density lower 
than 0.002 in (A) and 20 in (B) are marked in gray. The dashed black and solid blue lines represent the regression line and the 1:1 line, respectively.

Fig. 3. Validation of GPP estimates using all matched tower-based measurements. (A) BEPS GPP, (B) FluxSat GPP, (C) GOSIF GPP, and (D) CMLR GPP. The color of dots 
represents the data density. The dashed black and solid blue lines represent the regression line and the 1:1 line, respectively.
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deciduous forests, GRA, and CRO. FluxSat GPP proves to be 
the most accurate dataset for mixed forests, while GOSIF GPP 
performs best for SH. Finally, upon analyzing the model per-
formances in different months in Fig. 9, we observe that CMLR 
GPP consistently outperforms the other datasets, except for 
April and September, which typically represent transition peri-
ods for natural vegetation.

Discussion

Difference between CMLR and existing SIF-based 
GPP estimations
Although there are numerous GPP models and datasets avail-
able [3,4], only a small fraction of them incorporate SIF. 
However, SIF holds great promise as a tool for global photo-
synthetic mapping and other applications in Earth system 
science [55]. The results of this study (“Comparing CMLR 

and empirical methods using the validation dataset” and 
“Comparing CMLR GPP with other global GPP products” sec-
tions) demonstrate that the 2 SIF-based datasets, CMLR GPP 
and GOSIF GPP, outperform BEPS GPP and FluxSat GPP in 
most cases. GOSIF GPP is an empirical dataset that sorely uti-
lizes SIF to estimate GPP, but many studies have shown that 
the relationship between SIF and GPP is dependent on ecosys-
tem and environmental factors. Additionally, GOSIF is a recon-
structed dataset generated from reflectance and environmental 
variables using machine learning methods. Despite GOSIF GPP 
exhibiting a high signal-to-noise ratio and appearing spatially 
smooth, it is important to note that it is based on SIF simula-
tions rather than direct observations [41]. This limitation may 
impede the in-depth interpretation of results in subsequent 
studies. Using these data to analyze the physiological response of 
vegetation patterns may inadvertently lead to over-interpretation 
of the data, due to uncertainties in the physiological information 

Fig. 4. Time series of CMLR GPP (A and B), GOSIF GPP (C and D), FluxSat GPP (E and F), and BEPS (G and H) in comparison with long-term continuous GPP observations 
at 2 representative towers. The first column displays the results at the US-Ha1 tower (deciduous broadleaf forest, DBF), and the second column displays the results at the 
US-Bi2 tower (cropland, CRO).
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it contains. In contrast, the application of CMLR GPP avoids 
this concern because it directly used TROPOMI SIF observa-
tions. For the comparison of the new GPP dataset with refer-
ence GPP products, we used the cosine of solar zenith angle to 
get the instantaneous value. This conversion might undermine 
the accuracy of these reference GPP products, for it assumes a 
clear-sky condition. However, the uncertainties differ according 
to the algorithms to estimate GPP. For example, in the model 
training process of GOSIF, OCO-2 SIF at the overpass time was 
converted to daily value using pure geometric incoming light 
scaling. This means the conversion method used in this study is 
exactly an inverse process, and thereby causing limited impacts 
to the results.

There are also studies employing SIF observations as a con-
straint to optimize process-based models or calculate essential 
parameters [56,57]. In these studies, SIF is usually an output 
used for data assimilation, and such models simulate SIF and 
GPP by incorporating descriptions of many complex processes. 
However, the mechanisms and processes through which NPQ 
affects SIF and GPP in reality may be more intricate than those 
described in the models. In other words, the accuracy of GPP 
obtained in this way is constrained by the completeness of the 
process description and the accuracy of SIF simulation in these 
models. In contrast, our model concentrates solely on modeling 
the quantitative relationship between SIF and GPP. We directly 

utilize SIF as an input and avoid modeling SIF, NPQ, and their 
responses. Therefore, our approach involves fewer parameters 
and is somewhat less computationally intensive compared to 
complex assimilation models.

Uncertainties and prospects
The CMLR GPP product is derived from TROPOMI SIF obser-
vations and represents instantaneous GPP at the time of 
TROPOMI overpass (unit: μmol m−2 s−1). It has not been con-
verted to a daily product because both SIF and canopy qL 
exhibit diurnal patterns, which are influenced by changes in 
the light intensity and possibly incident angle throughout the 
day. Consequently, converting instantaneous GPP to a daily 
value would require a comprehensive understanding of the 
diurnal patterns of canopy qL, which is a topic to be studied in 
the future. In this study, we used the big-leaf assumption, which 
is suitable for the investigation of the spatial and seasonal pat-
terns [58]. However, the uncertainty introduced by this assump-
tion becomes significant if this approach is applied to satellite 
products capable of tracking daily changes in SIF (such as 
OCO-3) in the future.

The accuracy of CMLR GPP is affected by the noise present 
in TROPOMI SIF. Due to the relatively large swath, low signal-
to-ratio, and spectral resolution limitations of TROPOMI, there 
are uncertainties in SIF inputs, which are fully inherited by our 

Fig. 5. Global averaged time series of BEPS GPP, CMLR GPP, GOSIF GPP, and FluxSat GPP in various plant functional types (PFTs). (A) ENF: evergreen needleleaf forest, (B) EBF: 
evergreen broadleaf forest, (C) DNF: deciduous needleleaf forest, (D) DBF: deciduous broadleaf forest, (E) CRO: cropland, and (F) GRA: grassland.

D
ow

nloaded from
 https://spj.science.org at Forschungszentrum

 Juelich G
m

bh on February 10, 2025

https://doi.org/10.34133/remotesensing.0127


Chen et al. 2024 | https://doi.org/10.34133/remotesensing.0127 10

data product. The sun-sensor geometry and cloud cover can 
also influence the accuracy of SIF retrievals and thereby CLMR 
GPP values, although we tried to use strict rules to filter many 
unreliable records. In comparison, GOSIF GPP uses GOSIF, 
which is a reconstruction dataset with high signal-to-noise 
ratio. Therefore, the spatial pattern of GOSIF GPP appears 
smoother than that of CMLR GPP (although validation results 
show higher accuracy for CMLR GPP in most cases). When 
replacing the dataset with its monthly average, we observed an 
increase in GPP accuracy but a decrease in qL accuracy (Fig. 
S12). This discrepancy is likely because qL is an instantaneous 
variable that cannot be well modeled using a monthly average, 
while the estimation accuracy of GPP improves mainly due to 
reduced uncertainty in monthly SIF. Therefore, it is reasonable 
to expect that the accuracy of GPP calculated using this method 
will increase as the accuracy of the satellite SIF product 
improves or as better satellite instruments designed for SIF 
measurement are launched. Although the CMLR GPP is cur-
rently available only for the period from 2018 to 2021, it is likely 

to contribute to the study of long-term photosynthesis as satel-
lite SIF data accumulate in the future.

While the CMLR model is supported by mechanistic frame-
works, our limited knowledge of canopy qL necessitated its 
parameterization using a machine learning method, making the 
CMLR model essentially semi-empirical. As with many machine-
learning-based studies, the uneven distribution of samples (in 
this case, flux sites) may also impact our results. However, 
because we employ the random forest algorithm solely to esti-
mate canopy qL, SIF still predominantly explains the variation 
in CMLR GPP. Hence, the potential bias in canopy qL has lim-
ited impact on CMLR GPP. Although machine learning is often 
considered a black box, the CMLR model is not a black box 
because the mechanistic link between SIF and GPP is described 
within the MLR framework. Nonetheless, further investiga-
tion of canopy qL is warranted in the future. Additionally, 
incorporating the latest theories in photosynthetic physiology 
and improving the modeling of the link between light and 
carbon reactions should be considered to enhance the model 

Fig. 6. Model performances under different combination of temperature and VPD conditions. (A) Adjusted R2 of CMLR GPP in the temperature–VPD space; (B) adjusted R2 of 
GOSIF model in the temperature–VPD space; (C) RMSE of CMLR GPP in the temperature–VPD space; (D) RMSE of GOSIF model in the temperature–VPD space. VPD_mean 
represents the mean adjusted R2 or RMSE along the VPD axis, and Ta_mean represents the mean adjusted R2 or RMSE along the temperature axis. On account of different 
data volumes in each temperature and VPD bin, we used adjusted R2 instead of R2 and filtered the bins with less than 15 records.
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performance and extend its applicability for GPP estimation in 
stressful environments.

Overall, CMLR GPP performed well in EFs and GRA but 
showed lower performance in SH. The accuracy of the dataset 
should be improved specifically in April and September, as well 
as under particularly wet and cold conditions. Therefore, cau-
tion is advised when analyzing data in these conditions.

Summary
In this study, we developed a global 0.05° SIF-based GPP data-
set (CMLR GPP) using the MLR model and TROPOMI SIF 
observations. To parameterize qL (fraction of open photosystem 
II reaction centers) in the CMLR model, we trained a random 

forest model using several variables that represent environ-
mental conditions, canopy structure, land cover, geospatial 
location, and climate zones. The GPP estimates obtained using 
the CMLR method showed a high correlation with tower GPP 
(R2 = 0.72) in the validation dataset. On a global scale, CMLR 
GPP successfully captured spatial and temporal patterns of 
GPP and exhibited similar global averages to GOSIF GPP 
across different PFTs. At the global scale, CMLR GPP also 
showed R2 (0.55) and RMSE (6.69 μmol m−2 s−1) comparable 
with those in BEPS GPP, FluxSat GPP, and GOSIF GPP data-
sets. This superior performance was consistent across different 
time periods and under various NDVI, temperature, and VPD 
conditions.

Fig. 7. Model performances under different NDVI conditions (which is related to canopy structure and reflects the vegetation density in each pixel). (A) The R2 of GPP 
estimates from each dataset with the tower-based GPP measurements in different NDVI conditions; (B) the RMSE of GPP estimates from each dataset with the tower-based 
GPP measurements in different NDVI conditions. 

Fig. 8. Model performances in different PFTs. CRO: cropland, DF: deciduous forest, including both deciduous broadleaf and needleleaf forests, EF: evergreen forest, including 
both evergreen broadleaf and needleleaf forests, GRA: grassland, MF: mixed forest, SH: shrubland, including open shrubland, closed shrubland, savanna, and woody savanna. 
(A) The R2 of GPP estimates from each dataset with the tower-based GPP measurements in different PFTs; (B) the RMSE of GPP estimates from each dataset with the tower-
based GPP measurements in different PFTs. 
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