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A B S T R A C T

Identifying materials and retrieving their properties from spectral imagery is based on their spectral reflectance
calculated from the ratio of reflected radiance to the incident irradiance. However, obtaining the true
reflectances of materials within a vegetation canopy is challenging given the varying illumination conditions
across the canopy – i.e., the irradiance incident on a surface inside the canopy – caused by its complex
3D structure. Instead, in remote sensing, reflectances are calculated from the ratio of the spectral radiance
measured by the sensor to the top-of-canopy (TOC) spectral irradiance, resulting in apparent reflectances
that can significantly differ from the true reflectance spectra. To address this issue, we present a physically
based illumination correction method for retrieving the true reflectances from close-range hyperspectral TOC
reflectance images. The method uses five spectral invariant parameters to predict the illumination conditions
from TOC reflectance and compute the corrected spectrum using a physically based model. For computational
efficiency, the spectrally invariant parameters were retrieved using random forest regression trained with
Monte Carlo ray tracing simulations. The method was tested on close-range imaging spectroscopy data from
dense and sparse vegetation canopies for which reference in situ spectral measurements were available. This
work is a step toward resolving the 3D radiation regime in vegetation canopies from TOC hyperspectral
imagery. The retrieved spectral invariants provide a physical connection to the structure of the observed
vegetation canopy. The true spectra of artificial and natural materials in a vegetation canopy, determined
under various illumination conditions, allow their more robust (bio)chemical characterization, opening new
applications in vegetation monitoring and material detection, and machine learning makes it possible to apply
the method rapidly to large hyperspectral image sets.
1. Introduction

Close-range imaging spectroscopy measurements of vegetation
canopies enable non-invasive, high throughput monitoring applications
of the health and overall status of the vegetation very high resolu-
tion (Mishra et al., 2020; Peng et al., 2022). A key quantity for these
applications is the spectral hemispherical-directional reflectance factor
(reflectance or HDRF from hereafter), defined as the ratio between the
radiance scattered by a target surface to the radiance scattered by a
Lambertian reference surface under identical illumination conditions
and observation geometry (Schaepman Strub et al., 2006). However,
obtaining these conditions and geometries for each surface visible in
the data is practically impossible given the large number of leaves.
Furthermore, placing a reference surface within a canopy affects the
illumination conditions via multiple scattering. A solution to this issue
is typically sought by calibrating the spectra with respect to the
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top-of-canopy (TOC) surface. However, this TOC reflectance can be
significantly different from the true reflectance of an observed surface
due to the varying illumination conditions inside the canopy (Takala
and Mõttus, 2016). These differences may appear as artifacts in the
measured spectra and they can mask important spectral features lead-
ing to a misestimation of any material properties. For instance, the
multiply scattered photons from within the canopy on an observed
surface can cause the TOC reflectance to show spectral features similar
to leaf reflectance on materials with no such features Leblanc and Chen
(2001). Thus, illumination correction is crucial for accurate vegetation
monitoring applications relying on imaging spectroscopy data with a
sub-meter spatial resolution.

Generally, illumination correction methods can be categorized into
data driven methods and physically based methods. Most data driven
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methods are based on normalizing the measured spectra which can
reduce the variation between sunlit and shaded pixels of the same ma-
erial (Ge et al., 2016; Asaari et al., 2018; Roger et al., 2020). However,

the methods do not account for wavelength-dependent illumination
effects such as multiply scattered radiation from neighboring surfaces.

Physically based methods attempt to directly model the illumi-
ation conditions via parametric models. For instance, the COSINE
odel (Jay et al., 2016), coupled with the PROSPECT leaf radiative

transfer model (Feret et al., 2008), can accurately reproduce the true
reflectance of a single leaf in a laboratory setup with minimal multiple
scattering. More recently, Ihalainen et al. (2023b,a) demonstrated the
use of the spectral invariant theory, also called the p-theory, for retriev-
ng the true reflectances of sunlit leaves inside a vegetation canopy.
hey also showed that the p-theory is not valid for shaded leaves
ithout modifications to the theory. Overall, these methods are only
pplicable to leaves, given their reliance on forward modeling the leaf

reflectance, and they are not applicable to shaded surfaces. Recently, a
novel approach to slopes of surfaces from hyperspectral radiance was
presented by Carmon et al. (2023), illustrating the potential of the
spectral information in a pixel.

In this paper, we present an extended formulation of the spectral
nvariant theory for vegetation canopies. Using the theory, we can

convert the TOC reflectance values in each pixel of a hyperspectral
mage to the true reflectances of the materials filling these pixels.
ext, using random forest regression, we implement the illumination
orrection method in a computationally fast algorithm and demonstrate
ts performance on simulated and measured hyperspectral images.

2. Theory

Consider the spectral radiance scattered into the instantaneous field-
f-view of a detector above a vegetation canopy by a locally flat area
f a surface within the canopy, such that each point on the observed
rea receives approximately the same irradiance. The hemispherical-
irectional reflectance factor of the surface, measured with respect to
he TOC, is given by

𝑅TOC(𝛺𝑖, 𝛺′
𝑖 , 𝛺′

𝑠; 𝜆) ∶= 𝜋
𝐼𝑠(𝛺′

𝑖 , 𝛺′
𝑠; 𝜆)

𝛷TOC(𝛺𝑖; 𝜆)

=
𝜙(𝛺′

𝑖 ; 𝜆)
𝛷TOC(𝛺𝑖; 𝜆)

𝑆(𝛺′
𝑖 , 𝛺′

𝑠; 𝜆)

= 𝑘(𝛺𝑖, 𝛺′
𝑖 ; 𝜆)𝑆(𝛺

′
𝑖 , 𝛺′

𝑠; 𝜆), (1)

where 𝜆 is the wavelength, 𝐼𝑠 is the radiance scattered by the surface
n the direction 𝛺′

𝑠, 𝛷TOC is the total incident irradiance on the TOC
rom above the canopy, 𝛺𝑖 is the direction of the Sun in the TOC
oordinate system, 𝜙 is the total incident irradiance on both sides of
he surface (4𝜋), including from the direction opposite to the observer

for (partially) transmitting surfaces, 𝛺′
𝑖 is the direction of the Sun

n the surface coordinate system, 𝑆 ∶= 𝜋 𝐼𝑠
𝜙 is the scattering factor

of the surface (Ihalainen and Mõttus, 2022), and 𝑘 ∶= 𝜙
𝛷TOC

is the

irradiance ratio between the observed surface and the TOC (also called
the reflectance conversion factor; Markiet and Mõttus, 2020). In the
following text, we refer to the scattering factor as the true reflectance
given that the radiance scattered by a surface within a canopy is often
mostly due to reflectance rather than transmittance (Ihalainen et al.,
2023a). Additionally, we omit the use of the directional terms 𝛺𝑖, 𝛺′

𝑖 ,
and 𝛺′

𝑠 in further analysis for the sake of brevity. The irradiance 𝜙
can be written in terms of the downwelling irradiances from the sky,
𝜙𝑆 , and the multiply scattered irradiance from within the canopy, 𝜙𝑀 .

hus, we can write the irradiance ratio in terms of these components
s

𝑘(𝜆) = 𝜙𝑆 (𝜆)
𝛷TOC(𝜆)

+
𝜙𝑀 (𝜆)
𝛷TOC(𝜆)

(2)

= 𝑘𝑆 (𝜆) + 𝑘𝑀 (𝜆). (3)

A

2 
Let us next parameterize the irradiance ratios 𝑘𝑆 and 𝑘𝑀 . To that
end, the downwelling irradiances from the sky can generally be de-
composed as 𝜙𝑆 = 𝜙⊙ +𝜙𝐷 where 𝜙⊙ is the direct solar irradiance and
𝜙𝐷 is the diffuse sky irradiance. Consider first the ratio 𝜙⊙

𝛷TOC
. We note

that, 𝜙⊙ = 𝛷0 𝛼⊙ | cos 𝜃′0| where 𝛷0 is the direct normal component of
the solar irradiance on the TOC, 𝜃′0 ∈ [− 𝜋

2 ,
𝜋
2 ] is the angle between the

urface normal and solar direction, i.e., the solar zenith angle (SZA)
n the surface coordinate system and 𝛼⊙ is a solar-view factor defined
uch that 𝛼⊙ = 0 if the Sun is completely obstructed to the surface,
⊙ ∈ (0, 1) if the surface is in the geometric penumbra of the Sun, and
⊙ = 1 otherwise. The absolute value of cos 𝜃′0 accounts for the fact that
he side of the surface seen by the sensor may not be the sun-facing side
f the surface. Correspondingly, for the direct solar irradiance at the
OC we have 𝛷⊙ = 𝛷0 cos 𝜃0 where 𝜃0 ∈ [0, 𝜋2 ] is the SZA with respect
o the TOC surface normal. Given that 𝛷TOC and 𝛷⊙ can be related via
he direct-to-global irradiance ratio, 𝑑 = 𝛷⊙

𝛷TOC
, we can write

𝜙⊙(𝜆)
𝛷TOC(𝜆)

= 𝛽⊙𝑑(𝜆). (4)

where we have defined the solar geometry factor 𝛽⊙ ∶= 𝛼⊙
| cos 𝜃′0|
cos 𝜃0

.
 similar expression can be sough for 𝜙𝐷

𝛷TOC
. First, assuming isotropic

iffuse sky irradiance, we can write 𝜙𝐷 = 𝛽𝐷𝛷𝐷, where 𝛽𝐷 is the
raction of unobstructed sky visible on both sides of the surface, i.e., the
anopy gap fraction on the surface, also called the sky-view factor
y Carmon et al. (2023), and 𝛷𝐷 is the diffuse sky irradiance at the
OC. Then, since 𝛷𝐷 and 𝛷TOC are related via the diffuse-to-global

rradiance ratio, 1 − 𝑑 = 𝛷𝐷
𝛷TOC

, we get
𝜙𝐷(𝜆)
𝛷TOC(𝜆)

= 𝛽𝐷 (1 − 𝑑(𝜆)) . (5)

The downwelling irradiance ratio thus depends on only two geometric
arameters, 𝛽⊙ and 𝛽𝐷, as

𝑘S(𝜆) = 𝛽𝐷 + (𝛽⊙ − 𝛽𝐷)𝑑(𝜆). (6)

Note, that a nearly equivalent expression for 𝑘𝑆 can be derived for con-
vex surfaces or shoots, although with slightly different definitions for
𝛽⊙ and 𝛽𝐷 (Mõttus et al., 2015). The multiple scattering irradiance ratio
𝑘𝑀 can be derived using the spectral invariant theory (see Appendix)
which results in
𝑘𝑀 (𝜆) = �̃� �̃�0(𝜆) + �̃�𝐿

1 − �̃� ̃𝜔0(𝜆)
, (7)

where �̃�, �̃�, and �̃�𝐿 are scaled spectral invariant parameters related to di-
ectional gap density, photon recollision probability, and canopy inter-
eptance via Eqs. (A.11)–(A.13), respectively, and �̃�0 is an empirically

determined reference leaf albedo (Knyazikhin et al., 2013).
Given the parameterization of 𝑘 described above, we arrive at a

orward model for the TOC reflectance:

𝑅TOC(𝝑; 𝜆) =
(

𝛽𝐷 + (𝛽⊙ − 𝛽𝐷)𝑑(𝜆) +
�̃� �̃�0(𝜆) + �̃�𝐿
1 − �̃� �̃�0(𝜆)

)

𝑆(𝜆) + 𝜀(𝜆), (8)

where the state vector 𝝑 contains the spectral invariants 𝝑𝑘 = [𝛽⊙, 𝛽𝐷, �̃�,
�̃�, ̃𝑠𝐿]𝑇 as well as the spectra of 𝑑, �̃�0 and 𝑆, and 𝜀 contains the modeling
nd measurement errors. Importantly, if 𝝑𝑘, 𝑑 and �̃�0 are known, we
an directly compute the true reflectance 𝑆 using the measured 𝑅TOC
nd the modeled 𝑘 as

𝑆(𝜆) = 𝑅TOC(𝜆)
𝑘(𝝑𝑘, 𝑑 , �̃�0; 𝜆)

. (9)

3. Materials and methods

3.1. Study sites

We collected hyperspectral images and reference spectrometer data
for validating the presented method from two sites: Campus Klein-

ltendorf (CKA, 50◦ 37′ N, 6◦ 59′ E) in Rheinbach, Germany, between
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June 12 and July 6, 2023, and the Otaniemi campus (60◦ 11′ N, 24◦ 49′

E) in Espoo, Finland, on August 16th, 2022. The CKA site contained five
different types of Brassica in 3 × 3 m2 field plots. Namely, one B. juncea,
two B. napus and two B. carinata genotypes grown in a randomized
field design. At the acquisition dates, the plants were in stem elon-
gation phase, shortly before flowering. In Otaniemi, the hyperspectral
images were taken of a Diervilla lonicera Mill. shrubbery (Ihalainen
et al., 2023a). The canopy was dense, homogeneous, and completely
closed. At both sites, we placed artificial materials within the canopy
as markers and for testing the proposed method on non-vegetation
surfaces. At CKA, we placed a brown paper coffee filter in the canopy
for testing the method and at Otaniemi we used a plastic leaf as well
as a green, a yellow, and a red piece of paper.

3.2. Hyperspectral measurements

The hyperspectral measurements at CKA were carried out using
a Specim IQ portable pushbroom imaging spectrometer (SN: 190-
1100171, Specim, Finland) on June 17th, 2023. Specim IQ has a
pectral range of 400 to 1000 nm, a spectral resolution (full-width-at-
alf-maximum) of 7 nm, and a peak signal-to-noise ratio of 400:1. The
mages were captured under nearly cloudless conditions between 14:55
nd 15:45, corresponding to SZA values between 27.5◦ and 30.7◦.

The instrument was placed on a tripod, at around 1 m above the
TOC in a nadir view geometry, resulting in a spatial resolution of
pprox. 1.1 mm. To compute the TOC reflectance, a calibrated five-step
eference panel (Sphere Optics Zenite lite) with nominal reflectances
f approx. 10%, 20%, 30%, 44% and 50% was positioned at the TOC
n a tripod, in the field of view of the camera. To avoid saturating the
easurements the panel was placed so that only steps with 10%, 20%

eflectances were visible in the image. To further prevent saturating the
pectra and to obtain good a signal-to-noise ratio, the integration times
ere selected manually.

The hyperspectral measurements at Otaniemi were performed using
another Specim IQ device (SN: 190-1100152) in a setup similar to
the CKA measurements, as detailed by Ihalainen et al. (2023a). The

OC reflectance images from both study sites were computed by first
erforming dark-frame subtraction on the raw image and then dividing
he result with the mean spectra of the dark-frame subtracted reference
ixels. Finally, we used linear interpolation to resample the bands the
losest integer wavelength value. The SZA was approx. 50◦ during the
easurements. Since the reflectance spectra measured outdoors under

lear sky conditions with Specim IQ devices can be unstable from
round 400 to 415 nm and 925 to 100 nm (Behmann et al., 2018),

we clipped the hyperspectral data to contain only wavelengths between
420 and 915 nm.

3.3. Reference and training spectral data

We measured the HDRF of natural and artificial reference materials
ppearing in the hyperspectral images with spectrometry. At CKA, the

measurements were performed using a NaturaSpec field spectrometer
(Spectral Evolution, USA). The spectral range of NaturaSpec is from 350
to 2500 nm with spectral resolutions (full-width-at-half-maximum) of
.7 nm at 700 nm, 5.5 nm at 1500 nm, and 5.8 nm at 2100 nm. The device
easures and subtracts the dark current signal automatically from the

arget spectrum and interpolates the data into 1 nm intervals. To obtain
he HDRF of a target within a canopy at CKA, the radiance scattered
y the target was measured with a hand-held radiance-calibrated fiber
ptic cable with a 30◦ field of view, placed approx. 5 cm above the
arget at a nadir view angle. A black cardboard sheet with 2.5%
ominal reflectance was placed under the sample during measurement
o avoid background irradiances. Then, a calibrated 13 cm× 13 cm white
eference panel was measured in the same position and orientation as
he target. The HDRF was computed by dividing the target spectrum
ith the white reference panel spectrum. This setup was used for
 (

3 
Table 1
The 6S radiative transfer model input parameters for computing the direct-to-global
rradiance ratio.
Parameter Unit Value (Otaniemi) Value (CKA)

H2O g cm−2 1.8 1.7
Ozone Dobson unit 340 320
AOT at 550 nm 0.18 0.19
Fractions of aerosol types

Dust-like % 0.29 0.30
Water-soluble % 0.66 0.65
Oceanic % 0.02 0.01
Soot % 0.03 0.04

SZA Degree 50 30

measuring the reflectance of 4 leaves in different plots as well as a piece
of coffee filter paper placed in these plots. We refer to these leaves as
L1–L4 and the coffee filter papers as C1–C4 in the following sections.
The genotype of L1 was Brassica carinata (Ethiopian mustard) while
L2–L4 were of the Brassica napus (rapeseed) genotype.

In Otaniemi, the HDRF measurements were performed using an
AVASPEC-ULS 2048x64TEC-EVO spectrometer (Avantes, the Nether-
lands) with a bare fiber optic cable (for details, see Ihalainen et al.
(2023a)). The reflectances of 6 reference materials were measured: two
iervilla lonicera Mill. leaves (L5 and L6), a plastic leaf (PL), a red paper

leaf (RP), a green paper leaf (GP), and a yellow paper leaf (YP).
To provide spectral data for training the proposed illumination cor-

rection method (Section 3.7) we performed spectral measurements of
non photosynthetic materials and selected leaf spectra from a spectral
ibrary by Hovi et al. (2017) and Hovi and Rautiainen (2022). For the
on photosynthetic materials, we measured the HDRF of the soil at CKA
nd conducted laboratory measurements of directional-hemispherical
eflectance (DHR) for 5 artificial materials visually similar to the coffee
ilter paper: four different sheets of brown cardboard and a yellowed

newspaper. The soil HDRF was measured from three different positions
nd then averaged together, using the same measurement setup as with
he reference measurements at CKA. The DHR laboratory measurements
ere conducted with the NaturaSpec spectrometer and an AvaSphere-
0-REFL (Avantes, the Netherlands) integrating sphere. The measured
arget was placed on the sample port of the integrating sphere and
overed with the black cardboard sheet to reduce background radi-
tion. For the leaf spectra, we selected the broadleaved species data
rom the spectral library and computed the mean DHR of the adaxial
nd abaxial leaf sides of each broadleaved species resulting in 28 leaf
pectra. In addition, we selected the calibration spectrum of a gray
eference panel with 10% nominal reflectance. The total number of
pectra from different materials used in training the proposed method
as 35.

3.4. Top-of-canopy spectral irradiance modeling

For both measurement sites, and the ray tracing simulations, we
modeled the spectral direct-to-global irradiance ratio at the TOC us-
ng the Py6S interface (Wilson, 2013) of the 6S radiative transfer
odel (Vermote et al., 1997). For the input, 6S takes the atmospheric

parameters and SZA. To obtain the atmospheric input parameters,
we retrieved the GOCART (Goddard Chemistry Aerosol Radiation and
Transport, Chin et al., 2002) atmospheric composition for the CKA and

taniemi sites for the measurement dates using the Giovanni Web-
based tool (http://disc.sci.gsfc.nasa.gov/giovanni). The SZA was com-
puted based on the site coordinates and the time of the hyperspectral
measurement.

3.5. Monte Carlo ray traced data

We simulated hyperspectral data using a Monte Carlo ray tracing
MCRT) software developed by the authors (see Mõttus and Stenberg,

http://disc.sci.gsfc.nasa.gov/giovanni
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Table 2
The minimum and maximum values of the spectral invariants for the sunlit and shaded
eaf scenarios used in the global sensitivity analysis.

𝛽⊙ 𝛽𝐷 �̃� �̃� �̃�𝐿
min max min max min max min max min max

Sunlit 0.32 1.21 0.06 1.0 0.02 0.46 0.32 0.84 −0.02 0.06
Shaded 0.00 0.00 0.00 0.73 0.01 0.45 0.37 0.83 −0.01 0.05

2008, for more details). We refer to this data as MCRT data in the
ollowing text to distinguish it from the synthetic data used for training
he random forest model. The software was selected given its ability
o produce images of the incident irradiances on the visible surfaces
direct solar, diffuse sky, and multiply scattered) and the corresponding
pectral invariants, 𝛽⊙ and 𝛽𝐷 (as demonstrated by Ihalainen and
õttus (2022)) in addition to an orthographic TOC reflectance image.
he remaining spectral invariants, 𝜌 and 𝑝, and 𝑠𝐿, were computed via

east squares regression from Eq. (7). The input of the program includes
scene geometry (positions and orientations of the canopy elements),
optical properties of each element (spectral and directional scattering
properties), camera view direction, solar zenith and azimuth angles,
nd a spectrum for direct-to-global irradiance ratio at the TOC.

In more detail, we simulated a scene consisting of 138 randomly ori-
ented and positioned identical, disk-like, bi-Lambertian leaves within
a 1m × 1m area. The leaf radius was 13 cm. For the leaf reflectance
nd transmittance, we used the spectrum of the leaf #202 (Acer pseu-
oplatanus L.) in the ANGERS leaf optical properties database (Feret
t al., 2008). The forest floor was modeled as a flat Lambertian surface

and we simulated two scenarios: a forest floor reflectance factor taken
from the understory reflectance data measured by Rautiainen et al.
(2012) or set to zero. The simulated spectral bands corresponded to
he resampled bands of the Specim IQ, resulting in a total of 204 bands
er hypercube between 400 to 1000 nm. The simulated photons were
raced from the light sources (the Sun and the sky) to a camera placed
t nadir with a spatial resolution 1 cm. The Sun was modeled as a
istant light source, i.e., each photon had the initial same direction,
nd the solar zenith angle (SZA) was 30◦. The diffuse sky irradiance
as modeled as isotropic radiation. The direct-to-global irradiance ratio

pectrum was generated with the 6S model (Section 3.4) using SZA =
0◦ and atmospheric input parameters corresponding to the Otaniemi
ite parameters (Table 1).

3.6. Sensitivity analysis of the spectral invariant model

We performed a variance-based global sensitivity analysis (GSA)
to quantify the sensitivity of the TOC reflectance model (Eq. (8)) to
he spectral invariant parameters for wavelengths between 400 and
000 nm. Specifically, we used the GSA method by Saltelli et al.

(2010) to compute total sensitivity index 𝑆𝑇 𝑖 for each spectra invariant
parameter and the interactions between the parameters.

The sensitivity analysis was performed for two scenarios: a sunlit
eaf and a shaded. The GSA used a Saltelli sampler with 512 samples per

parameter which yielded 6144 combinations for the five spectral invari-
ants. The minimum and maximum values of 𝝑𝑘 for both scenarios were
determined from the MCRT data as the mean value of each spectral
invariant plus or minus two times its standard deviation (Table 2). For
𝑑, we used the 6S-generated spectra for the CKA site. For �̃�0, we used
the PROSPECT-generated spectrum with the input parameter values
given by Knyazikhin et al. (2013). For 𝑆, we used the reflectance of the
coffee filter paper, although should be noted that the model sensitivity
does not depend on 𝑆 since none of the model parameters change the
spectra of 𝑆.

The GSA was implemented in Python using the SALib library
Iwanaga et al., 2022; Herman and Usher, 2017). To compare the

relative importance of the total sensitivity index, we normalized it
as percentage. We refer to this value as the contribution of a given
parameter.
 /

4 
Table 3
The optimized hyperparameters for the random forest regression model. The scikit-learn
variable names are in parentheses.

Name Value

Number of trees (n_estimators) 110
Maximum depth of trees (max_depth) 26
Minimum samples split (min_samples_split) 20
Minimum samples leaf (min_samples_leaf) 21
Maximum features (max_features) sqrt
Bootstrap samples (bootstrap) True

3.7. Random forest regression and illumination correction

We trained a random forest (RF) regression algorithm (Breiman,
2001) on synthetic data to predict the spectral invariants from hyper-
spectral TOC reflectance images. We created the synthetic 𝑅TOC spectra
for all bands of the Specim IQ camera using the forward model (Eq. (8))
which takes in the direct-to-global irradiance ratio 𝑑, reference leaf
albedo �̃�0, true reflectance 𝑆, and the five spectral invariant parameters
𝝑𝑘. For 𝑑, we used the 6S-generated spectra for the CKA site. For �̃�0,
we used the PROSPECT-generated spectrum with the input parameter
values given by Knyazikhin et al. (2013). For 𝑆, we used the 35 spectra
f leaves and non photosynthetic materials (Section 3.3). The values

of 𝝑𝑘 were taken from the MCRT data for the scene with a non-zero
forest reflectance. More specifically, we identified the sunlit and shaded
pixels of the surfaces visible in the image, resulting in a total of 226
surfaces. Then, we computed the corresponding mean values of the
spectral invariants, ⟨𝝑𝑘⟩, for each surface yielding 226 mean values.
Note that a surface having one part of its surface sunlit, and another
part shaded is counted as two surfaces.

To generate synthetic 𝑅TOC spectra for each of the 35 spectra from
the spectral measurements and libraries (Section 3.3), we drew 30
random samples of 𝝑𝑘 from a Gaussian distribution for each ⟨𝝑𝑘⟩ from
he MCRT data. We used empirically determined standard deviations
or the spectral invariants to produce values not appearing in the
imulations: 𝜎𝝑𝑘 = 10−2 × [5.0, 5.0, 2.0, 2.0, 0.1]𝑇 . Any sampled spectral
nvariant with an unrealistic value was adjusted back within range via
eflective clipping. To simulate spectral measurement noise, we added
ero-mean Gaussian noise with a standard deviation of 0.001 to each
TOC spectrum. The total number of 𝑅TOC spectra and 𝝑𝑘 used in the

ynthetic data was 30 × 226 × 35 = 237 300.
RF regression is a supervised machine learning method based on

an ensemble of decision trees. The predicted values are generated by
ggregating the outcomes from all individual decision trees within the
nsemble, taking advantage of the overall predictive capability of the
nsemble. Additionally, RF can measure the importance of each input
eature to the predicted values. We computed this feature importance
o discard redundant spectral bands for each Specim IQ band between
20 and 915 nm using a permutation based approach (Breiman, 2001)

and we selected the 10 most influential bands based on the importance
alues. The wavelengths corresponding to these bands were 430, 450,
80, 550, 650, 680, 700, 718, 770, and 790 nm. The RF algorithm was
mplemented in Python using the scikit-learn library (Pedregosa et al.,

2011) and the hyperparameters of the model (Table 3) were tuned us-
ng the Optuna hyperparameter optimization framework library (Akiba

et al., 2019).
After predicting the spectral invariants with RF, we computed the

llumination-corrected spectrum, i.e., the true reflectance, from Eq. (9),
sing the predicted parameters and along with the site-specific spectra

for 𝑑 and the PROSPECT-generated spectrum for �̃�0 as the input. The
code for computing the illumination-corrected spectrum was optimized
and parallelized for the CPU using the Numba high performance Python
compiler (Lam et al., 2015). The code for performing illumination
correction with RF is made available on our GitHub repository (https:
/github.com/mottus/spectralinvariant).

https://github.com/mottus/spectralinvariant
https://github.com/mottus/spectralinvariant
https://github.com/mottus/spectralinvariant
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Fig. 1. An example of the differences between the modeled and simulated irradiance ratios, 𝑘𝑆 , 𝑘𝑀 , and their sum 𝑘, for a sunlit pixel (A) and a shaded leaf pixel (B).
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3.8. Accuracy estimation

We evaluated the agreement between the modeled and measured
or simulated data using the root-mean-squared deviation (RMSD). The
esult of the random forest inversion was evaluated by first selecting
he pixels corresponding to the in-situ measured surfaces in the image
nd computing their average reflectance. Then, we computed RMSD
etween average illumination corrected spectra and the corresponding
n-situ measured reference reflectance spectra. Similarly, we computed
he RMSD between the average measured TOC reflectances and the
eference spectra.

4. Results

4.1. Accuracy of the spectral invariant model

The spectra modeled with Eq. (8) showed close agreement with the
imulated spectra, and the largest source of error was the simulation
oise (Fig. 1). The RMSD values for 𝑅TOC was below 0.008 for all pixels,

and the averaged RMSD was 0.003. For the irradiance ratios, the RMSD
of 𝑘𝑆 was always below 0.009, and the averaged RMSD was 0.004. The

MSD for 𝑘𝑀 was below 0.017 and the averaged RMSD was 0.008. For
the ratio of the total incident irradiances, i.e., the reflectance correction
factor, 𝑘, the RMSD was below 0.018 for all pixels and the averaged
RMSD was 0.009.

4.2. Global sensitivity analysis

The results of the GSA (Fig. 2) showed that the spectral invariants �̃�
and �̃�, corresponding to the multiply scattered irradiance from within
he canopy, produce most of the variability in the TOC reflectance
pectrum above 710 nm. For the sunlit leaf, the contributions of �̃� and �̃�

above 710 nm were approx. 50% and 20%, respectively. For the shaded
leaf, the contribution of �̃� ranged between approx. 70% and 80% while
the contribution of �̃� was approx. 30%.

For wavelengths below 710 nm, the solar geometry factor 𝛽⊙ was
he largest contributor on the TOC reflectance of a sunlit leaf (Fig. 2a),

with values ranging between around 70% and 95%. The contribution of
the sky-view factor 𝛽𝐷 decreased monotonically, starting from approx.
30% at 400 nm. The contributions of �̃� and �̃�𝐿 were nearly negligible
while �̃� had a slight contribution (<6%), peaking at around 550 nm.
The GSA for the shaded leaf showed a much larger contribution for �̃�
close to 550 nm, peaking at approx. 50%. The contribution of ̃𝑟ℎ𝑜 was
below 1% whereas the contribution of �̃�𝐿 ranged between approx. 5%
to 25%. By far, the largest contribution below 710 nm was from 𝛽𝐷,
anging between 40% and 95%.
5 
Table 4
RMSD values between the in-situ measured reflectance spectra and the averaged spectra
of the hyperspectral image pixels corresponding to the reference materials. The RMSD

as computed for the illumination-corrected image and the TOC reflectance image.
Entries without data are marked with ND (no data).

Site ID Sunlit Shaded

Corrected TOC Corrected TOC
RMSD (%) RMSD (%) RMSD (%) RMSD (%)

CKA L1 5.1 10.9 4.6 20.0
L2 7.1 13.4 6.4 15.4
L3 5.1 10.8 4.3 11.4
L4 4.7 5.9 5.1 13.9
C1 5.5 9.1 8.1 45.3
C2 1.2 9.3 15.5 45.2
C3 3.6 12.0 8.6 40.5
C4 2.8 7.1 6.5 35.4

Otaniemi L5 0.8 16.8 ND ND
L6 6.9 22.9 ND ND
PL 3.1 11.8 5.3 18.0
GP 7.0 21.7 38.3 46.6
RP 7.2 18.3 23.1 49.9
YP 30.5 36.9 29.4 48.9

4.3. Random forest performance and retrieval algorithm performance

Comparing the RGB images of the TOC reflectance data and the
llumination-corrected data from both study sites shows that the pro-

posed method generally reduced the visual differences between the
sunlit and shaded pixels of the same material (Fig. 3). Indeed, surfaces
hidden completely in shadow such as soil and leaves became more
isible in the illumination-corrected images. The algorithm produced

reasonable results even for materials that did not have spectrally similar
counterparts in the training data such as the red plastic stick at CKA
(Fig. 3b), or the red paper leaf at Otaniemi (Fig. 3d).

Overall, the illumination correction produced similar RMSD values
for data from both sites, it performed better for sunlit than shaded
urfaces, and the RMSD was lower for the corrected spectra than for
he TOC reflectances (Table 4). For the CKA data, the highest RMSD

value for the corrected spectra was for the shaded pixels of the paper
C2 (RMSD = 15.5%) and the lowest value was for the sunlit pixels of
the same material (RMSD = 1.2%). For the data from Otaniemi, the
ighest RMSD for the corrected spectra was for the sunlit pixels of the

yellow paper, YP, (RMSD = 30.5%) and the lowest value was for leaf
5, L5, (RMSD = 0.8%) which was entirely sunlit.

A comparison between the in-situ measured spectra, the TOC re-
flectance spectra, and the illumination-corrected spectra of the refer-
ence materials clearly demonstrated how the multiple scattering within
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Fig. 2. Contributions of the different input variables to the TOC reflectance modeled using the spectral invariants (Eq. (8)) in the case of a sunlit leaf (A) and shaded leaf (B).
Fig. 3. TOC reflectance images (A, C), and the illumination-corrected images in RGB (B, D; wavelengths 600, 550, 480 nm) from the two sites. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
the canopy affected the TOC reflectance spectra while it was diminished
in the illumination corrected spectra (Fig. 4). Indeed, typical features of
vegetation reflectance spectra such as the small increase in reflectance
6 
close to 550 nm and the sharp increase at the red edge (710 to 790 nm)
are clearly visible in both sunlit and shaded pixels of the reference
sample C1 (Fig. 4e, f).
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Fig. 4. The in-situ measured reference reflectance spectra and the corresponding averaged TOC reflectance spectra and illumination-corrected spectra from the hyperspectral images
for the sunlit pixels of the red paper RP (A), yellow paper YP (B), sunlit leaf L5 (C), shaded plastic leaf PL (D), sunlit paper C3 (E), and shaded paper C3 (F). (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
f
p

For the best result by the algorithm, the sunlit leaf, L5, the
llumination-corrected spectrum closely followed the-situ measured
pectrum while the TOC reflectance was much higher than the ref-
rence spectrum after 700 nm (Fig. 4c). The algorithm produced
he worst result for the yellow paper where the corrected spectrum

was much lower than the reference spectrum, although the effects of
multiple scattered irradiance were still mostly eliminated (Fig. 4B).

The illumination correction algorithm was computationally fast.
Predicting the spectral invariants from the TOC reflectance via RF re-
ression and then computing the illumination-corrected hyperspectral
mages took on the average 0.7 s when benchmarked on a laptop with
 12th Gen Intel® Core i5-1245U processor that had a base clock speed

of 1.6 GHz and 10 cores.
7 
5. Discussion

5.1. Modeling TOC reflectance with spectral invariants

Overall, the presented spectral invariant model (Eq. (8)) for TOC
reflectance can accurately account for the varying illumination con-
ditions on leaves and other surfaces within a vegetation canopy with
ive spectral invariant parameters and two spectra. Importantly, the
resented model applies to both sunlit and shaded surfaces, whereas

previous approaches based on the spectral invariant theory (Ihalainen
et al., 2023b,a) were only applicable to sunlit leaves.

When comparing the spectra of the modeled irradiance ratios with
their simulated counterparts, the irradiance ratio for the single-
scattered radiation, 𝑘 , showed a very low RMSD (Fig. 1). This was
𝑆
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to be expected as the ratio derives from well-established radiometric
principles. A more surprising finding was the similarly low RMSD
for the multiply scattered irradiance ratio, 𝑘𝑀 , given that its model
(Eq. (7)) was derived with several simplifications and approximations.

herefore, the results for 𝑘𝑀 only confirm that a parametric model
taking the form of Eq. (7) (Stenberg et al., 2016; Wang et al., 2018) can
closely approximate the spectra of 𝑘𝑀 . Hence, the model offers a simple
and accurate tool for estimating the magnitude of the multiply scattered
irradiance from vegetation on 𝑅TOC. While the present study focused
on investigating the performance of the model in the VNIR region, we
expect the theory also to be applicable to the shortwave infrared region
based on our preliminary studies (results not show here). However,
confirming this is left for future studies.

The global sensitivity analysis results show which wavelength re-
gions are best suited for the retrieval of a given parameter, whether
the used spectral region can be used to reliably estimate the different
parameters, and how the uncertainty in a parameter may affect the
forward model output. In the case of a sunlit surface, the solar geometry
factor 𝛽⊙ was by far the largest contributor to the variation in 𝑅TOC
between 400 to 1000 nm (Fig. 2a). The contribution was the largest
t around 600 to 700 nm due to the low magnitude of the diffuse sky
rradiance and the strong absorption of photons by vegetation in this
ange. Given the nature of Rayleigh scattering, the magnitude of the
iffuse sky irradiance, and thereby the contribution of the sky-view
actor 𝛽𝐷 to 𝑅TOC decreased from 400 to 700 nm. Above 700 nm, the
nfluence of 𝛽𝐷 became nearly negligible whereas the contributions of
he parameters accounting for the multiply scattered radiation from
ithin the canopy started showing an effect. The contributions of both

̃ and �̃� showed relatively similar behavior, indicating that independent
etrievals of both parameters can be difficult. In the case of a shaded
urface, 𝛽⊙ = 0 and the sky-view factor had the largest influence on
TOC in the 400–700 nm region, particularly at both ends of the region.
otably, the parameter �̃� had a prominent contribution at around
50 nm, corresponding to the relatively low absorption of photons
y the leaf pigments. Hence, the influence of multiple scattering from
egetation at around 550 nm to 𝑅TOC is largely controlled by �̃�. The
arameter �̃�𝐿 had a notable contribution for the shaded leaf below
00 nm whereas the contribution was overall nearly negligible for the
unlit leaf.

The presented forward model shares similarities with the model
used by Carmon et al. (2023) for retrieving topographic variables
rom the radiance measured by an airborne sensor. Carmon et al.
odel the overall radiance measured by the instrument, including the

path radiance from to atmospheric scattering which requires the use
f atmospheric radiative transfer modeling software as part of the
orward model whereas the presented model is formulated for the
OC reflectance. In contrast, our approach reduces the number of free
arameters, which is advantageous for model inversion, but requires
nowledge of the downwelling radiation via the direct-to-global ir-
adiance ratio, 𝑑. Other differences between the models are related
o the definitions of the parameters related to the direct and diffuse
luxes on the observed surfaces which may be of little consequence
or surfaces in open areas but can play a larger role in vegetation
anopies. Moreover, of their parameters, Carmon et al. ‘‘caution against
nterpreting them directly as geometric properties’’. The reason for
aution is most evident in the definition for their parameter related
o direct solar irradiance, which they set equal to the cosine of the
ZA with respect to the observed surface, cos 𝜃′0, i.e., they do not
onsider the effect of the geometric penumbra. In the present study,
he penumbra is accounted for via the solar-view factor 𝛼⊙. A more
eneral difference is that Carmon et al. use the traditional approach
f vegetation reflectance factors, making use of an abstract canopy
urface, whereas our approach aims to attribute the observed reflected
adiance to the physical properties of a scattering element which can be
rradiated from any direction inside a canopy treated as a 3D scattering
edium.
8 
5.2. Illumination correction

The illumination correction results showed that the proposed
ethod can retrieve the true reflectance of leaves and artificial mate-

rials in direct sunlight and shade at very different vegetation canopies
with good accuracy (Table 4). Using random forest (RF) regression to
etrieve the parameters describing the illumination conditions provided
 computationally efficient method for illumination correction that is
pplicable to any material within a canopy. In comparison, previous il-
umination correction methods by Ihalainen et al. (2023b,a) were based
n minimizing a (regularized) objective function and could describe the
ptical properties of only one type of material, namely leaves. Also,
inimizing an objective function is often computationally costly as

t often requires several rounds of iteration to reach the minimum.
epending on the data volume, level of software optimization, and
omputational resources, this can take from minutes to hours, whereas
he method proposed here can produce results in under a second for
he whole image, making it well-suited for applications requiring a
igh-throughput or near real-time application. As a downside, being
ased on machine learning, our method is limited by the availability
ata. Hopefully, in the future, spectral data can be retrieved from the
mages themselves by identifying sunlit pixels where multiple scattering
y vegetation has only a small effect.

The RF algorithm performed surprisingly well given that the spec-
tral invariant parameters were taken from relatively simplistic sim-
ulated hyperspectral images. This corroborates the usefulness of 3D
radiative transfer ray tracing simulations as a source of training data
for universal approximators such as RF or neural networks (Verger
et al., 2011). However, a lack of spectrally similar training data led
to an underperformance for pixels with artificial materials whereas the
performance was much better for the pixels containing leaves which did
not suffer from this issue (Fig. 3). For instance, the training data did not
contain many samples from partially shaded surfaces nor the spectra
of artificial materials, resulting in a corrected spectrum with much
ower values than the reference spectrum for the yellow paper in the

Otaniemi data (Fig. 4b). Furthermore, the training data only contained
TOC reflectance spectra from pure pixels, i.e., pixels containing one
material. Hence, the trained RF model mispredicts the parameters for
spectrally mixed signals causing regions such as the border between
leaf edge and ground to appear as yellow. Nevertheless, the proposed
method was able to reduce the effect of multiple scattering in pure
pixels with natural and artificial materials. The good performance of
the RF algorithm on the two sites with very different canopy structures
and leaf types indicates its transferability to other sites as well. To
improve the overall performance of the RF algorithm, the training
spectra should contain a larger coverage of different material types
from spectral libraries as well as spectrally mixed signals.

Regardless of how well the presented forward model describes
he TOC reflectance or how accurately the RF algorithm predicts the
pectral invariants, the illumination-corrected spectra can still contain
odeling errors depending on the spectra used for describing the

tmosphere and leaves, 𝑑 and �̃�0, respectively. Since 𝑑 was generated
y a well-established atmospheric radiative transfer software, the error
ue to 𝑑 should generally be relatively low, provided accurate input
arameters for the software. The error due to 𝑑 is the lowest for
unlit pixels where 𝑘𝑠 is relatively constant whereas it is much more
rominent for shaded pixels where 𝑘𝑆 ≈ 𝛽𝐷(1 − 𝑑). Additionally, 𝑑
an be expected to be the same for each pixel, especially for close-
ange data. In comparison, determining the spectrum of �̃�0 is more
euristic and an ill-chosen spectrum can cause anomalous features in
he corrected spectra. This can be seen, e.g., in the spectra of the coffee
ilter paper C2 (Fig. 4f) where the feature at around 700 nm can be

attributed to the modeled 𝑘𝑀 having higher values than the true 𝑘𝑀 ,
meaning that the albedo fits badly to the true 𝑘𝑀 regardless of the
fitting parameters. Moreover, using a leaf albedo for �̃�0 for an open

and heterogeneous canopy ignores the influence of non photosynthetic
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materials on the multiple scattered irradiance. On the other hand, for
relatively dense and homogeneous vegetation canopies, using the a leaf
albedo for �̃�0 is a reasonable approach, as evident from the results
for the leaves L5 (Fig. 4c) and L6. A possible solution to obtaining
an optimal reference albedo for a given canopy would be to apply
the inversion method by Ihalainen et al. (2023a) to Eq. (A.10). For
nstance, one can take the mean HDRF spectrum of the canopy to
stimate the spectral invariants �̃�, �̃�, and �̃�𝐿 that best fit Eq. (A.10) as

well as �̃�0(�̃�), parameterized by leaf traits, �̃�. The resulting spectrum
�̃�0(�̃�) then describes the reference leaf albedo of the canopy. However,
the validity and performance of this method needs to be investigated
by future studies.

In addition to the modeling errors, the hyperspectral data and the
spectrometer data may also contain errors due to instrument noise,
calibration, and measurement protocol, as discussed by Ihalainen et al.
(2023a). The errors were mitigated via careful consideration of the sen-
sor properties, meteorological and radiation conditions, measurement
setup, and measurement protocol (Section 3). Despite these considera-
tions, the signal-to-noise ratio of shaded pixels in hyperspectral images
an still be suboptimal. This results in the overall better performance
f the presented method for sunlit than for shaded surfaces.

We used RF to predict the spectral invariants, which is one of the
any possible universal approximators usable for the task, such as XG-
oost (Chen and Guestrin, 2016), lightGBM (Ke et al., 2017), Gaussian

processes (Rasmussen, 2003), neural networks (Heaton, 2018). Alterna-
tively, convolutional neural networks could also leverage information
from the neighboring pixels to better predict the spectral invariants as
he multiply scattered irradiance does usually not vary rapidly inside
 canopy. Using the pixel neighborhood could also be used in methods
ased on finding the minimum of an objective function to produce
nformative constraints to the solution.

Our method is also applicable to large mixed pixels containing
multiple materials such as data collected via airborne measurements,
as indicated by the results of Mõttus et al. (2017), Markiet and Mõt-
tus (2020), Carmon et al. (2023), and the derivations by Mõttus
t al. (2015). For vegetation canopies, the resulting illumination-

corrected spectrum would be that of an average canopy element in
the pixel (Takala and Mõttus, 2016). However, this still needs to be
onfirmed by future studies. While the illumination-corrected images
re useful for revealing objects hidden in shadow, the corrected spectra

should also provide more accurate retrievals for traits such as leaf
hlorophyll content than the TOC reflectance. Hence, future research
hould focus on combining the presented method with a leaf model
uch as PROSPECT (Féret et al., 2017) or a spectral invariant based
arameterization (Wu et al., 2021) for leaf trait retrieval. Finally, since
he presented method effectively estimates the amount of radiation
rriving on and scattered by a given surface, the method could also

be extendable to account for emitted radiation, such as solar induced
chlorophyll fluorescence.

6. Conclusion

In this work, we developed a physically based illumination correc-
tion method for hyperspectral TOC reflectance images of vegetation
in the VNIR wavelength region. The illumination conditions were ac-
counted for by a mathematical model for the TOC reflectance that
considers the irradiance incident on a physical surface (leaf or another
material) in the vegetation canopy using a set of spectral invariant
parameters related to the different irradiance components: direct so-
lar beam, diffuse sky illumination, and multiple scattering inside the
canopy.

To obtain a computationally efficient illumination correction
method that works for various types of materials, we trained a random
forest regression algorithm to predict the spectral invariants from the
measured TOC reflectance spectra. Applying the method to measured
hyperspectral data demonstrated that it can accurately retrieve the true
reflectance spectrum of the observed surface when the random forest
has been trained on sufficiently similar spectral data.
9 
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Appendix. Irradiance ratio for multiply scattered photons within
a canopy

Let us first consider the traditional formulation of p-theory, where
we assume that the impact of canopy background on canopy reflectance
is negligible. More specifically, we follow the supporting Informa-
tion by Knyazikhin et al. (2013). They approximate canopy spectral
eflectance as

HDRF(𝛺 , 𝜆) = 𝑖0𝜌(𝛺)
1 − 𝑝𝜔𝐿(𝜆)

𝜔𝐿(𝜆), (A.1)

where �̃�0 is the leaf albedo, 𝑖0 is the canopy interceptance, 𝜌(𝛺) is the
irectional gap density and 𝑝 is the photon recollision probability. The
eaf albedo can be written in terms of leaf interceptance, 𝑖𝐿, fraction of
urface-reflected radiation, 𝑠𝐿, and a transformed leaf albedo, �̃� (S3.1)

𝜔𝐿(𝜆) = 𝑖𝐿�̃�(𝜆) + 𝑠𝐿. (A.2)

The fraction 𝑠𝐿 = 1 − 𝑖𝐿 is assumed to be a wavelength-independent
function of leaf surface properties. Knyazikhin et al. (2013) approxi-
mate 𝜔𝐿 ≈ 𝑖𝐿�̃� in the 710–790 nm spectral interval, since the diffuse
leaf albedo dominates in this region. However, we will take a different
route and keep the term 𝑠𝐿 in the equations. Substituting Eq. (A.2) into
Eq. (A.1) and solving for HDRF∕�̃� yields
HDRF(𝛺 , 𝜆)

�̃�(𝜆)
= 1

1 − 𝑝𝑠𝐿

(

𝑖𝐿𝑖0𝜌(𝛺) + 𝑖𝐿𝑝HDRF(𝛺 , 𝜆) + 𝑖0𝜌(𝛺)𝑠𝐿
�̃�(𝜆)

)

. (A.3)

Let us now define a new set of spectral invariant parameters:

𝜌′(𝛺) = 𝑖𝐿𝑖0𝜌(𝛺)
1 − 𝑝𝑠𝐿

(A.4)

𝑝′ =
𝑖𝐿𝑝

1 − 𝑝𝑠𝐿
(A.5)

𝑠′ (𝛺) = 𝑖0𝜌(𝛺)𝑠𝐿 . (A.6)
𝐿 1 − 𝑝𝑠𝐿
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Therefore, Eq. (A.3) simplifies to
HDRF(𝛺 , 𝜆)

�̃�(𝜆)
= 𝜌′(𝛺) + 𝑝′HDRF(𝛺 , 𝜆) +

𝑠′𝐿
�̃�(𝜆)

, (A.7)

from which we can get a new formulation for the HDRF as

HDRF(𝛺 , 𝜆) =
𝜌′(𝛺)�̃�(𝜆) + 𝑠′𝐿(𝛺)

1 − 𝑝′�̃�(𝜆)
. (A.8)

This formulation extends the p-theory to wavelengths outside of the red
dge (710–790 nm) spectral interval.

Similar to the spectral invariant relationship between the canopy
HDRF and the albedo of an average leaf in the canopy (Eq. (A.8)), any
transformed leaf albedo can be related to a fixed reference spectrum,
�̃�0 as

�̃�(𝜆) = 𝜌𝐿 �̃�0(𝜆) + 𝑐𝐿
1 − 𝑝𝐿 �̃�0(𝜆)

, (A.9)

where 𝑝𝐿 is the within-leaf recollision probability, 𝜌𝐿 = 1 − 𝑝𝐿 is
the within-leaf escape probability, and 𝑐𝐿 is the fraction of reflected
incident radiation. Substituting Eq. (A.9) into Eq. (A.1) via Eq. (A.2)
hus yields

HDRF(𝛺 , 𝜆) = �̃� 𝜔0(𝜆) + �̃�𝐿
1 − �̃� �̃�0(𝜆)

, (A.10)

where the new spectral invariant parameters are

�̃� = 1
1 − 𝑝(𝑠𝐿 − 𝑖𝐿𝑐𝐿)

(

𝑝𝐿(1 − 𝑝𝑠𝐿) + 𝑖𝐿𝜌𝐿𝑝
)

(A.11)

�̃� = 1
1 − 𝑝(𝑠𝐿 − 𝑖𝐿𝑐𝐿)

(

𝑖𝐿𝑖0𝜌𝐿𝜌 − 𝑠𝐿𝑝𝐿
)

(A.12)

�̃�𝐿 = 1
1 − 𝑝(𝑠𝐿 − 𝑖𝐿𝑐𝐿)

(

𝑠𝐿 + 𝑖𝐿𝜌𝐿𝑐𝐿
)

. (A.13)

An expression for the irradiance ratio, 𝑘𝑀 , can be sought from basic
radiometric definitions and Eq. (A.1). Given that the canopy reflectance
s defined as HDRF = 𝜋 𝐼𝐶∕𝛷TOC, we can write the radiance, 𝐼𝐶 ,

scattered from within the canopy toward a leaf as

𝐼𝐶 (𝛺) = 𝜋−1𝛷TOC(𝜆)HDRF(𝜆, 𝛺)

= 𝜋−1𝛷TOC(𝜆)
𝑖0𝜌(𝛺)

1 − 𝑝𝜔𝐿(𝜆)
𝜔𝐿(𝜆). (A.14)

Thus, the incident irradiance on the leaf from all directions within the
canopy is given by

𝜙𝐶 (𝜆) = ∫4𝜋
𝐼𝐶 (𝛺)|𝜇|𝑑 𝛺

= 𝜋−1𝛷TOC(𝜆)
𝑖0

1 − 𝑝𝜔𝐿(𝜆)
𝜔𝐿(𝜆)∫4𝜋

𝜌(𝛺)|𝜇|𝑑 𝛺

= 𝛷TOC(𝜆)
𝑖0𝜌

1 − 𝑝𝜔𝐿(𝜆)
𝜔𝐿(𝜆),

where 𝜌 = 𝜋−1 ∫4𝜋 𝜌(𝛺)|𝜇|𝑑 𝛺. Hence, we finally get an expression for
𝑀 :

𝑘𝑀 (𝜆) = 𝜙𝐶 (𝜆)
𝛷TOC(𝜆)

=
𝑖0𝜌𝜔𝐿(𝜆)
1 − 𝑝𝜔𝐿(𝜆)

(A.15)

=
𝜌′�̃�(𝜆) + 𝑠′𝐿
1 − 𝑝′�̃�(𝜆)

(A.16)

=
�̃� ̃𝜔0(𝜆) + �̃�𝐿
1 − �̃� ̃𝜔0(𝜆)

, (A.17)

where the spectral invariant parameters have been integrated over 4𝜋.

Data availability

I have shared a link to the code. The data will be made available
on request.
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