001039212 001__ 1039212
001039212 005__ 20250428202211.0
001039212 0247_ $$2doi$$a10.1016/j.compbiomed.2025.109794
001039212 0247_ $$2ISSN$$a0010-4825
001039212 0247_ $$2ISSN$$a1879-0534
001039212 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01748
001039212 037__ $$aFZJ-2025-01748
001039212 041__ $$aEnglish
001039212 082__ $$a570
001039212 1001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b0$$eCorresponding author
001039212 245__ $$aPatient-specific lattice-Boltzmann simulations with inflow conditions from magnetic resonance velocimetry measurements for analyzing cerebral aneurysms
001039212 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001039212 3367_ $$2DRIVER$$aarticle
001039212 3367_ $$2DataCite$$aOutput Types/Journal article
001039212 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745848743_9743
001039212 3367_ $$2BibTeX$$aARTICLE
001039212 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001039212 3367_ $$00$$2EndNote$$aJournal Article
001039212 520__ $$aMagnetic resonance velocimetry (MRV) measurements were used as inflow conditions for lattice-Boltzmann (LB) simulations to analyze cerebral aneurysms. Unlike previous studies on larger vascular structures, aneurysm analysis involves smaller scales and higher pressure differences, making near-wall velocity measurements challenging with standard 3 Tesla scanners. To address this, the aneurysm geometry was scaled 5-fold for sufficient magnetic resonance velocimetry (MRV) resolution, with inflow measurements interpolated onto the simulation grid while ensuring dimensionless equivalence via the Reynolds number. Zero-velocity points were included near walls to enforce the no-slip condition if measurement points exceed the simulation domain. The proposed interpolation-based inflow method was compared to a nearest-neighbor approach and a parabolic velocity profile. It achieved the best agreement with MRV centerline velocity measurements (mean error: 3.12%), followed by the nearest-neighbor method (3.18%) and the parabolic profile (9.85%). The parabolic inflow led to centerline velocity overpredictions and total pressure underpredictions, while the nearest-neighbor approach underestimated the wall shear stress (WSS) and exhibited inconsistencies in wall normal stress (e.g., maximum WSS was 18.3% lower than with interpolation). Using the interpolated inflow method, Newtonian and non-Newtonian flows based on the Carreau–Yasuda model were compared. The non-Newtonian model showed lower centerline velocities and total pressure but higher WSS than the Newtonian case. These findings highlight the importance of accurate, patient-specific inflow conditions and the necessity of non-Newtonian modeling for reliable WSS predictions. Combining MRV measurements with non-Newtonian LB simulations provides a robust framework for personalized cerebral aneurysm hemodynamic evaluation.
001039212 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001039212 536__ $$0G:(EU-Grant)101136269$$aHANAMI - Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration (101136269)$$c101136269$$x1
001039212 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001039212 7001_ $$0P:(DE-HGF)0$$aWaldmann, Moritz$$b1
001039212 7001_ $$0P:(DE-HGF)0$$aIto, Shota$$b2
001039212 7001_ $$0P:(DE-HGF)0$$aWüstenhagen, Carolin$$b3
001039212 7001_ $$0P:(DE-HGF)0$$aGrundmann, Sven$$b4
001039212 7001_ $$0P:(DE-HGF)0$$aBrede, Martin$$b5
001039212 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b6
001039212 773__ $$0PERI:(DE-600)1496984-1$$a10.1016/j.compbiomed.2025.109794$$gVol. 187, p. 109794 -$$p109794$$tComputers in biology and medicine$$v187$$x0010-4825$$y2025
001039212 8564_ $$uhttps://juser.fz-juelich.de/record/1039212/files/1-s2.0-S0010482525001441-main.pdf$$yOpenAccess
001039212 8767_ $$d2025-03-12$$eHybrid-OA$$jDEAL
001039212 909CO $$ooai:juser.fz-juelich.de:1039212$$popenaire$$popen_access$$pOpenAPC_DEAL$$pdriver$$pVDB$$pec_fundedresources$$popenCost$$pdnbdelivery
001039212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b0$$kFZJ
001039212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b6$$kFZJ
001039212 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001039212 9141_ $$y2025
001039212 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001039212 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001039212 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001039212 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001039212 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001039212 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001039212 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT BIOL MED : 2022$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001039212 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMPUT BIOL MED : 2022$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001039212 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-18$$wger
001039212 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001039212 920__ $$lyes
001039212 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001039212 980__ $$ajournal
001039212 980__ $$aVDB
001039212 980__ $$aUNRESTRICTED
001039212 980__ $$aI:(DE-Juel1)JSC-20090406
001039212 980__ $$aAPC
001039212 9801_ $$aAPC
001039212 9801_ $$aFullTexts