001     1039212
005     20250428202211.0
024 7 _ |a 10.1016/j.compbiomed.2025.109794
|2 doi
024 7 _ |a 0010-4825
|2 ISSN
024 7 _ |a 1879-0534
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01748
|2 datacite_doi
037 _ _ |a FZJ-2025-01748
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Rüttgers, Mario
|0 P:(DE-Juel1)177985
|b 0
|e Corresponding author
245 _ _ |a Patient-specific lattice-Boltzmann simulations with inflow conditions from magnetic resonance velocimetry measurements for analyzing cerebral aneurysms
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745848743_9743
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic resonance velocimetry (MRV) measurements were used as inflow conditions for lattice-Boltzmann (LB) simulations to analyze cerebral aneurysms. Unlike previous studies on larger vascular structures, aneurysm analysis involves smaller scales and higher pressure differences, making near-wall velocity measurements challenging with standard 3 Tesla scanners. To address this, the aneurysm geometry was scaled 5-fold for sufficient magnetic resonance velocimetry (MRV) resolution, with inflow measurements interpolated onto the simulation grid while ensuring dimensionless equivalence via the Reynolds number. Zero-velocity points were included near walls to enforce the no-slip condition if measurement points exceed the simulation domain. The proposed interpolation-based inflow method was compared to a nearest-neighbor approach and a parabolic velocity profile. It achieved the best agreement with MRV centerline velocity measurements (mean error: 3.12%), followed by the nearest-neighbor method (3.18%) and the parabolic profile (9.85%). The parabolic inflow led to centerline velocity overpredictions and total pressure underpredictions, while the nearest-neighbor approach underestimated the wall shear stress (WSS) and exhibited inconsistencies in wall normal stress (e.g., maximum WSS was 18.3% lower than with interpolation). Using the interpolated inflow method, Newtonian and non-Newtonian flows based on the Carreau–Yasuda model were compared. The non-Newtonian model showed lower centerline velocities and total pressure but higher WSS than the Newtonian case. These findings highlight the importance of accurate, patient-specific inflow conditions and the necessity of non-Newtonian modeling for reliable WSS predictions. Combining MRV measurements with non-Newtonian LB simulations provides a robust framework for personalized cerebral aneurysm hemodynamic evaluation.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a HANAMI - Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration (101136269)
|0 G:(EU-Grant)101136269
|c 101136269
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Waldmann, Moritz
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ito, Shota
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wüstenhagen, Carolin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grundmann, Sven
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brede, Martin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 6
773 _ _ |a 10.1016/j.compbiomed.2025.109794
|g Vol. 187, p. 109794 -
|0 PERI:(DE-600)1496984-1
|p 109794
|t Computers in biology and medicine
|v 187
|y 2025
|x 0010-4825
856 4 _ |u https://juser.fz-juelich.de/record/1039212/files/1-s2.0-S0010482525001441-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1039212
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177985
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Elsevier 09/01/2023
|0 PC:(DE-HGF)0125
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT BIOL MED : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMPUT BIOL MED : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21