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A B S T R A C T

Magnetic resonance velocimetry (MRV) measurements were used as inflow conditions for lattice-Boltzmann
(LB) simulations to analyze cerebral aneurysms. Unlike previous studies on larger vascular structures, aneurysm
analysis involves smaller scales and higher pressure differences, making near-wall velocity measurements
challenging with standard 3 Tesla scanners. To address this, the aneurysm geometry was scaled 5-fold for
sufficient magnetic resonance velocimetry (MRV) resolution, with inflow measurements interpolated onto the
simulation grid while ensuring dimensionless equivalence via the Reynolds number. Zero-velocity points were
included near walls to enforce the no-slip condition if measurement points exceed the simulation domain. The
proposed interpolation-based inflow method was compared to a nearest-neighbor approach and a parabolic
velocity profile. It achieved the best agreement with MRV centerline velocity measurements (mean error:
3.12%), followed by the nearest-neighbor method (3.18%) and the parabolic profile (9.85%). The parabolic
inflow led to centerline velocity overpredictions and total pressure underpredictions, while the nearest-neighbor
approach underestimated the wall shear stress (WSS) and exhibited inconsistencies in wall normal stress (e.g.,
maximum WSS was 18.3% lower than with interpolation). Using the interpolated inflow method, Newtonian
and non-Newtonian flows based on the Carreau–Yasuda model were compared. The non-Newtonian model
showed lower centerline velocities and total pressure but higher WSS than the Newtonian case. These findings
highlight the importance of accurate, patient-specific inflow conditions and the necessity of non-Newtonian
modeling for reliable WSS predictions. Combining MRV measurements with non-Newtonian LB simulations
provides a robust framework for personalized cerebral aneurysm hemodynamic evaluation.
1. Introduction

Aneurysms are dangerous vascular diseases that can be fatal if left
untreated. They are characterized by the formation of arterial bulges,
often developing in vessels with complex geometries, such as vascular
bifurcations or tapering regions. These locations experience particularly
high WSS and WSS gradients due to small curvature radii [1]. The
disease results from degenerative changes in the vessel wall, and its
progression is largely influenced by forces exerted by blood flow, which
can ultimately lead to rupture.

According to [2], aneurysm rupture risk can be classified based on
four key characteristics: (1) the flow type, determined by the direc-
tion of the incoming blood jet impinging on the vessel wall, (2) the
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aneurysm’s size, (3) the location of the impact area, and (4) the size of
the impact area. Since forces acting on the vessel wall play a crucial
role in aneurysm formation, incorporating additional features related
to WSS and WNS loads is highly desirable.

Currently, three primary approaches are used to supplement con-
ventional analyses of cerebral aneurysms: (1) experimental analyses,
sometimes validated using computational fluid dynamics (CFD) simu-
lations, (2) purely numerical studies, and (3) hybrid approaches that
combine experimental and numerical techniques.

Experimental investigations of aneurysm hemodynamics are often
conducted using simplified models and blood-replacement fluids [3–5].
However, this approach makes it difficult to distinguish between errors
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caused by geometric simplifications and those resulting from the use
of non-physiological fluid models. In [6], a patient-specific aneurysm

odel with an implanted flow diverter was analyzed using both MRV
nd CFD simulations. Although the study showed good agreement

between numerical and experimental data, limitations were observed.
The model was not scaled, leading to limited spatial resolution, and a

ewtonian fluid was used, despite blood being non-Newtonian. As a
esult, significant deviations were found, particularly in the maximum

velocity, which was 14.86% higher in the CFD simulation compared to
the MRV measurement inside the flow diverter region.

Accurate fluid mechanics investigations of vascular systems re-
uire blood substitute fluids with properties closely matching those
f human blood. This requires at least a correct representation of
lood’s nonlinear flow behavior. In [7], a CFD-based study quantified
he relevance of this adaptation, revealing deviations of up to 63%
n velocity magnitude between Newtonian and non-Newtonian fluid

models at specific control points. However, direct experimental mea-
urements with human blood are challenging due to coagulation and
he associated changes in flow properties. Furthermore, MRV-based
nalyses of aneurysm models at real scale suffer from low spatial
esolution, making model scaling desirable. However, scaling combined
ith Newtonian water–glycerin mixtures introduces deviations in the

flow curve at low shear rates, leading to errors in recirculation and
tagnation zones [8].

Better agreement with the real flow can be achieved using non-
Newtonian fluids in 1:1 models. In [9], non-Newtonian model fluids
roduced larger recirculation areas compared to Newtonian fluids. The
tudy in [10] used a full-scale patient-specific model with a poly-
crylamide/glycerin fluid that approximates blood properties. Laser
oppler anemometry (LDA) measurements were performed to evaluate

he effects of a flow diverter. Similarly, in [11], CFD calculations were
successfully validated in an elastic aneurysm model using LDA mea-
surements with a polyacrylamide-based fluid closely matching blood’s
non-Newtonian properties. However, unlike MRV, LDA cannot be per-
formed in vivo, making it difficult to integrate into patient-specific
workflows. Additional options for creating blood-analogous fluids for
1:1 models are discussed in [12,13].

Current medical imaging techniques lack the spatial resolution re-
uired to capture detailed patient-specific flow fields in vivo. This lim-
tation prevents reliable fluid mechanics analyses, such as determining
he WSS distribution on vessel walls, leading to an incomplete under-
tanding of aneurysm formation, triggers, and disease progression. As a
esult, patient-specific prognoses regarding aneurysm development and
mplant effectiveness remain uncertain.

The second major approach to aneurysm analysis relies on purely
numerical CFD simulations. These are frequently used to study flow
characteristics and identify predictive rupture risk parameters, such
as vortex strength. Many of these simulations use simplified, generic
eometries, such as the symmetric semicircular model in [14]. More
dvanced studies analyze real patient-specific vessel geometries. For

instance, in [15], CFD simulations of aneurysm models from 12 patients
were used to predict rupture risk based on regions of exposed low

SS. Similarly, the study in [16] combined CFD simulations with
orphological analysis of internal carotid artery geometries from 52
atients with intracranial aneurysms. A functional principal component

analysis of geometric and fluid dynamic features revealed correlations
between aneurysm location, rupture status, and hemodynamic factors,
aiding in patient clustering for rupture risk assessment.

The Multiple Aneurysms AnaTomy Challenge (MATCH) summarizes
the results of many working groups regarding the influence of vessel
morphology on hemodynamics [17]. In these results, the focus is not
only on the representation of the pulsatile flow in the patient-specific
simulation domain, but also on the evaluation of the WSS in the
aneurysm and the evaluation of implants [18] and their influence on
he vessel geometry [19].
2 
While the previously mentioned numerical studies assume New-
tonian fluids, considering blood’s non-Newtonian properties provides
additional insights. Studies such as [20–22] investigated how non-
Newtonian properties affect WSS, concluding that while general flow
patterns remain similar, recirculation zones differ. Furthermore, New-
tonian models systematically underestimate WSS, which can impact
rupture risk assessment. Other studies found significant differences
in flow topology between Newtonian and non-Newtonian fluids [7].
In [23,24], a non-Newtonian LB model based on the Carreau–Yasuda
CY) equation with single Bhatnagar–Gross–Krook (BGK) and multiple
elaxation time collision operators was used to assess WSS distributions.
hey found that non-Newtonian fluids exhibit more oscillatory WSS and
reater fluctuations at high Reynolds numbers.

Although numerical methods show strong potential for analyzing
emodynamics, simulation accuracy is highly dependent on boundary
onditions. Small deviations in the geometry, e.g., due to imaging
esolution limitations or uncertainties in inflow/outflow conditions,
an lead to incorrect results. Consequently, key flow characteristics,
uch as vortex structures and flow separation, are often misrepresented,
otentially leading to fluid mechanics and clinical misinterpretations.

Hybrid approaches that integrate experimental and numerical meth-
ods have recently gained attention. Studies such as [25,26] incor-
porated 4D-flow magnetic resonance imaging (MRI) data as inflow
onditions for CFD simulations of aortic flow, demonstrating the im-
ortance of accurate boundary conditions for capturing complex flow
egimes. Similarly, [27] developed a non-invasive methodology for

determining the 3D flow environment of the dural venous sinuses. They
combined CFD with phase-contrast magnetic resonance venography,
achieving pressure gradient errors of only 5% compared to venous
manometry.

Applying such hybrid methods to cerebral aneurysms is more chal-
enging due to their smaller spatial scale and higher pressure differ-
nces, making velocity measurements with standard 3 Tesla scanners

difficult, especially near vessel walls. This study advances hybrid ap-
proaches by scaling aneurysm geometries 5-fold to achieve sufficient
MRV resolution. The measured inflow conditions are then rescaled
and interpolated onto CFD simulation grids. All flow variables exhibit
dimensionless equivalence when scaled or re-scaled according to the
Reynolds number. Measurements close to walls can lie outside the
simulation domain, caused by funnel-shaped connections between the
neurysm model and hoses of the measuring devices. Therefore, if

measurements points exceed the simulation domain, interpolation is
one with zero-velocity points to satisfy the no-slip condition. The CFD
imulations are conducted with an LB solver, whose potential for sim-
lating non-Newtonian flows with the CY model has been underlined
n the studies mentioned before.

The new method aims to combine the strengths of experimental and
numerical approaches while mitigating their weaknesses. The measure-
ment data of the original flow provide the correct and patient-specific
inflow topology, while the simulation contributes to the accessibility
of highly resolved flow data and the resilience of derivable quantities.
These quantities would be less accurate even when measured with the
scaled geometry (e.g. near-wall velocities or WSS), or impossible to be
measured (e.g. the 3D pressure field). The weaknesses of the individual
methods are eliminated: too low resolution of the measurement data
nd the risk that simulations develop incorrect flow topologies due
o inaccurate inflow conditions. The following questions are examined
or a reconstructed geometry from a patient suffering from a cerebral
neurysm:

1. What grid resolution is required for the MRV-LB-based simula-
tions?

2. Can simulations reproduce centerline velocities from MRV mea-
surements?

3. How does the proposed inflow condition compare to simpler
alternatives?
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Fig. 1. 3D aneurysm model for the MRV measurements.

4. Is simulating non-Newtonian flow necessary? (The MRV mea-
surements and comparisons for 1.–3. are for a Newtonian fluid)

The investigation builds the foundation for developing digital twins
for a patient’s personalized evaluation of the rupture risk or implant
design, e.g., the design of flow diverters or stents.

The manuscript is structured as follows. Section 2 explains the
methods of the hybrid MRV-LB approach. The results are presented in
Section 3, followed by a summary and discussion in Section 4, and a
conclusion in Section 5.

2. Methods

This section provides an overview over the measurement and com-
putational methods. Section 2.1 details the MRV measurement tech-
niques. Section 2.2 provides information on the numerical methods for
generating the computational meshes and conducting simulations, the
computational domain, the boundary conditions, and the model used
for simulating a non-Newtonian fluid behavior.

2.1. Magnetic resonance velocimetry

MRV is a flow measurement technique that has been successfully
developed in recent years for the use on humans. For a detailed
description of the principles of the technique, the reader is referred
to [28].

The MRV measurement of the aneurysm model in the current
study is performed on the medical MRI scanner Magnetom Tim TRIO
(Siemens, Erlangen, Germany) with a magnetic field of 3 Tesla. This
MRI scanner is particularly suitable for flow measurements as it gener-
ates an extremely homogeneous magnetic field.

The aneurysm model for the MRV measurements was extracted from
computed tomography (CT) data. It is equipped with transition parts
and threads so that the inlets and outlets of the aneurysm can be
connected to hoses. The model is then manufactured from polyamide
using the laser sintering process, as the model cannot consist of any
magnetic or metallic parts inside of the field of view. To ensure a
sufficient resolution in the MRV measurement, the aneurysm is scaled
5-fold.

Scaling flow geometries is a widely used approach in fluid mechan-
ics to enhance experimental resolution, accessibility, and feasibility.
This technique is based on the Reynolds number, a dimensionless quan-
tity representing the ratio of inertial forces to viscous forces in a flow.
The Reynolds number is derived through the non-dimensionalization
of the governing equations. To achieve dynamic similarity between
in-vitro experiments and in-vivo conditions, the fluid viscosity and
flow rate were adjusted to match the Reynolds number corresponding
to arterial flow entering the aneurysm. All flow variables, including
3 
Table 1
MRV measurement parameters.

Parameter name Parameter value

Field of view 384 × 288 × 120 mm3

Isotropic resolution 1mm
Echo time 3.1ms
Repetition time 5.9ms
Flip angle 35◦

Velocity encoding 0.7m/s (isotropic)
Acquisition time 82min

WSS and its gradients, exhibit dimensionless equivalence when scaled
according to the Reynolds number.

The experimental setup consists of a 300 L tank filled with a water–
glycerin mixture. 1 g∕l copper sulfate is added to perform as a contrast
agent. An axial 2.2 k W pump (Matrix 5, EBARA Pumps Europe S.p.A.,
Italy) transports the fluid through hoses to the aneurysm model. Fig. 1
shows the 3D model that has been used for the measurements with
a diameter of 𝑑𝑀 𝑅𝑉 = 0.017 m. After pumping the flow through the
system for approximately half an hour, the temperature of the fluid
settled at 22.7 ◦C. The boundary conditions observed with suitable
sensors were a flow rate of 6.55 l∕min leading to an inlet bulk velocity
of �̄�𝑖𝑛𝑙 = 0.48 m∕s, a kinematic viscosity of the water–glycerin mixture
of 𝜈 = 1.16 ⋅ 10−5 m2∕s, and a density of 𝜌 = 1170 k g∕m3.

The measurements were performed using a custom velocity-
sensitive gradient echo sequence. The parameters used can be seen in
Table 1. It is important to note that the sequence settings are highly
dependent on the specific MRI scanner being used. These settings
may vary based on the scanner’s hardware and should be individually
optimized for each MRI system to achieve the highest possible flow
measurement precision. Table 1 provides the settings used in this study
for completeness and experimental reproducibility.

2.2. Numerical methods

Unstructured hierarchical Cartesian meshes are generated with the
massively parallel mesh generator of the multi-physics, open-source
simulation framework m-AIA [29],1 which is an extended version of the
formerly known Zonal Flow Solver (ZFS) [30]. The meshes are based
on an octree structure implied by the iterative subdivision of an initial
cube surrounding the region of interest (ROI), i.e., the aneurysm [31].
Starting from the initial cube, cubes are decomposed into eight sub-
cubes for a pre-defined number of refinement steps. The parent–child
relations of cubes and sub-cubes constitute the octree structure of the
mesh. Cells that are located outside the ROI are deleted. At each refine-
ment step, the domain is decomposed by a Hilbert decompositioning
method using space filling curves as described in [32]. The resulting
mesh is stored by efficient parallel I/O routines using the Network
Common Data Form (NetCDF) format [33].

The governing equations of the LB method for conducting the CFD
simulations are based on the BGK model approximation [34]
𝜕𝒇
𝜕 𝑡 + 𝝃 ⋅ 𝒇 = −𝜔(𝒇 − 𝒇 𝒆𝒒), (1)

𝒇 𝑛𝑒𝑞 = 𝒇 − 𝒇 𝑒𝑞 , (2)

with the particle probability distribution functions (PPDFs) 𝒇 =
𝒇 (𝒙, 𝝃, 𝑡), time 𝑡, location 𝒙, microscopic velocity 𝝃, collision frequency
𝜔, and Boltzmann–Maxwellian distribution function 𝒇 𝑒𝑞 . In [34], Eq. (1)
is discretized for a small time increment 𝛿 𝑡 yielding

𝒇 𝒊(𝒙 + 𝝃𝒊𝛿 𝑡, 𝝃, 𝑡 + 𝛿 𝑡) − 𝒇 𝒊(𝒙, 𝝃𝒊, 𝑡) =
− 𝜔(𝒇 𝒊(𝒙, 𝝃𝒊, 𝑡) − 𝒇 𝑒𝑞

𝑖 (𝒙, 𝝃𝒊, 𝑡)). (3)

1 m-AIA https://git.rwth-aachen.de/aia/m-AIA/m-AIA.

https://git.rwth-aachen.de/aia/m-AIA/m-AIA
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Fig. 2. Computational domain and the corresponding coordinate system.

The discretization is based on the D3Q27 model [35], with 𝑖 ∈
{1, 2, 3,… , 𝑄} directions. The discrete Boltzmann–Maxwellian distribu-
tion function reads

𝒇 𝑒𝑞
𝑖 = 𝑤𝑐𝑖𝜌

⎛

⎜

⎜

⎝

1 + 𝝃𝒊 ⋅ 𝒖
𝑐2𝑠

+ 1
2

(

𝝃𝒊 ⋅ 𝒖
𝑐2𝑠

)2

− 𝒖 ⋅ 𝒖
2𝑐2𝑠

⎞

⎟

⎟

⎠

, (4)

with the isothermal speed of sound 𝑐𝑠 = 1∕
√

3, density 𝜌, fluid velocity
vector 𝒖 = (𝑢, 𝑣, 𝑤)𝑇 , and weight coefficients 𝑤𝑐𝑖 [35].

The macroscopic variables 𝜌 and 𝒖 can be computed by

𝜌 =
𝑄
∑

𝑖=1
𝑓𝑖, (5)

𝜌𝒖 =
𝑄
∑

𝑖=1
𝝃𝑖 ⋅ 𝑓𝑖. (6)

The static pressure 𝑝𝑠 is obtained from the density by 𝑝𝑠 = 𝑐2𝑠 𝜌. Note that
𝑝𝑡𝑜𝑡 is the total pressure, expressed as the sum of 𝑝𝑠 and the dynamic
pressure 𝑝𝑑 = 𝜌|𝒖|2∕2, where |𝒖| is the velocity magnitude.

The computational domain and its coordinate system are illustrated
in Fig. 2. It is scaled by a factor of 1:5 compared to the 3D model
used for the MRV measurements. To assure a smooth connection to
the MRV devices, the vessels of the 3D model shown in Fig. 1 are
widened near the inlet and the outlets. Therefore, the inlet of the
computational domain begins at the end of the conical inflow region.
For simulations with Newtonian fluids, the Reynolds number is set
to 𝑅𝑒 = �̄�𝑖𝑛𝑙 𝑑∕𝜈 = 703, where �̄�𝑖𝑛𝑙 = 0.48 m∕s matches with the
experimental data, and 𝑑𝐶 𝐹 𝐷 = 0.0034 m is the diameter at the inlet
of the computational domain. The kinematic viscosity is adapted to
account for the differences in 𝑑𝑀 𝑅𝑉 and 𝑑𝐶 𝐹 𝐷 while matching the
Reynolds number of the MRV measurements.

An interpolated bounce-back scheme is used to satisfy the no-slip
condition at the inner walls of the vessel [36]. That is, an interpolated
distribution is reflected at the intersection between the grid and the
3D model. If the wall is located exactly halfway between the outer and
inner cell centers, this condition reduces to simple halfway bounce-
back. Furthermore, a rigid wall without fluid–structure interaction is
assumed. At the two outlets, a constant pressure is prescribed and the
velocity is extrapolated from the inner cells.

The following three different types of inflow conditions are investi-
gated:

1. Interpolation-based inflow condition
In this approach, velocity values at simulation mesh points are
computed using interpolation. A Cartesian stencil with eight
interpolation points is constructed to ensure a balanced repre-
sentation of the surrounding flow structure. These points are
evenly distributed in space around the mesh point to form
a local Cartesian coordinate system. For each octant of this
system, the nearest MRV measurement point is selected. If no
valid measurement point exists in an octant, it is assumed that
4 
the octant is intersected by the geometry. In such cases, the
minimum distance to the boundary wall is determined, and a
zero-velocity interpolation point is placed at the boundary. The
final velocity at each mesh point is computed using inverse
distance interpolation from the surrounding interpolation points.

2. Nearest-neighbor inflow condition
This method directly assigns velocity values from the MRV mea-
surements using a nearest-neighbor algorithm. Since MRV data
provide voxel-centered velocity distributions, i.e., each velocity
vector represents the average velocity within a voxel, the ve-
locity of a computational mesh point is taken from the voxel
in which it resides. This approach is straightforward to imple-
ment, making it a practical alternative to the more complex
interpolation-based method. However, its accuracy is limited by
the spatial resolution of the MRV data, particularly near the
boundaries, as discussed in Section 1.

3. Parabolic inflow condition
The third inflow condition assumes a parabolic velocity profile
for three-dimensional pipe flow, with a maximum inlet velocity
in the 𝑥-direction given by 𝑈𝑚𝑎𝑥

𝑖𝑛𝑙 = 2�̄�𝑖𝑛𝑙. Like the nearest-
neighbor method, this approach is simple to implement, making
it a viable option if it does not compromise simulation accuracy.

For the non-Newtonian simulations, two models are integrated
into the LB solver. The simpler model of the two is the power-law
model [37]

𝜇 = 𝜆 ̇𝛾𝑛−1, (7)

with the dynamic viscosity 𝜇, shear rate �̇�, consistency index 𝜆, and
non-dimensional power-law exponent index 𝑛. The indices 𝜆 and 𝑛 are
empirical curve-fitting parameters. With this model, two types of non-
Newtonian fluids can be described: for 𝑛 < 1, fluids of a shear-thinning
type are obtained, while for 𝑛 > 1, shear-thickening flow is modeled. In
the case of 𝑛 = 1, a Newtonian behavior of the viscosity is recovered.

The power-law model applies only to a restricted range of shear
rates. It is unable to predict zero- or infinite-shear viscosities, yielding
strongly fluctuating local viscosities [38]. This problem is pertinent,
especially for the simulation of non-Newtonian flow using the LB
method, since stability problems arise for approaching zero-viscosity
values.

The second model that is implemented in the LB solver is an
alternative to the power-law model which considers zero- and infinity-
viscosity values, i.e., the CY model based on the viscosity equation
from [39]
𝜇 − 𝜇∞
𝜇0 − 𝜇∞

= [1 + (𝜆 ̇𝛾)𝑎](𝑛−1)∕𝑎. (8)

The additional parameters of the CY model are the zero viscosity 𝜇0,
and infinite viscosity 𝜇∞. They guarantee constant viscosity as the shear
rate tends to either zero or infinity, while 𝑎 describes the transition
between the Newtonian plateau and power law region. The CY model
is used for the non-Newtonian LB simulations in this study, with 𝜇∞ =
0.0035 Pa s, 𝜇0 = 0.056 Pa s, 𝜆 = 1656.6 s, 𝑛 = 0.3568, and 𝑎 = 2.0 [40].

The WSS (𝜎𝑊 𝑆 𝑆 ), which is analyzed in Section 3, is computed based
on the rate-of-strain tensor 𝜖 = 1

2 (∇𝒖 + ∇𝒖𝑇 ), and stress tensor 𝜎 =
2𝜇 𝜖+𝑝𝑠𝐼 , where 𝐼 is the identity matrix. It is defined as the magnitude
of the tangential component of the surface traction

𝑡∗ = 𝜎 ⋅ 𝑛∗, (9)

𝜏 = 𝑡∗ − (𝑡∗ ⋅ 𝑛∗)𝑛∗, (10)

𝜎𝑊 𝑆 𝑆 = ‖𝜏‖, (11)

where 𝑛∗ is the outward unit normal to the boundary of the domain, 𝑡∗
the surface traction, and 𝜏 its tangential component.

The WNS (𝜎𝑊 𝑁 𝑆 ) is the normalized total pressure acting on the
boundary in the wall-normal direction

𝜎𝑊 𝑁 𝑆 =
𝑝𝑡𝑜𝑡
̄𝑝𝑖𝑛𝑙𝑡𝑜𝑡

, (12)

where �̄�𝑖𝑛𝑙 is the area-averaged total pressure at the inlet.
𝑡𝑜𝑡
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Table 2
Grid resolution (𝛿 𝑥), total number of cells (𝑁𝑐 , 𝑁𝑚 , 𝑁𝑓 ), deviation of |�̄�| to the next
coarser grid, and 𝑦+ for each grid.

Grid 𝛿 𝑥 Nr. of cells Deviation [%] 𝑦+

Coarse 𝑑∕50 𝑁𝑐 = 5 ⋅ 106 – <7
Medium 𝑑∕100 𝑁𝑚 = 40 ⋅ 106 0.7 <3
Fine 𝑑∕200 𝑁𝑓 = 300 ⋅ 106 0.1 <1

3. Results

This section presents the results addressing the research questions
posed in Section 1. First, a grid refinement study is conducted in
Section 3.1 to answer question 1. Next, Section 3.2 compares simulation
results for Newtonian fluids under different inflow conditions with
MRV measurements, addressing questions 2 and 3. Finally, Section 3.3
examines the differences between Newtonian and non-Newtonian flow
characteristics, addressing question 4.

The flow simulations were conducted on the central processing unit
(CPU) partition of the Jülich Research on Exascale Cluster Architectures
(JURECA-DC) supercomputer [41] of the Jülich Supercomputing Centre
(JSC), Forschungszentrum Jülich, Germany. Each node contains two
AMD EPYC 7742 processors with 64 cores each and 2.25 GHz, and
512 GB DDR4 memory.

3.1. Grid refinement study

To guarantee a sufficiently high grid resolution, the velocity magni-
tude averaged over the red centerline illustrated in Fig. 3(a) ̄

|𝒖| is first
analyzed. For a better orientation, the characteristic points 𝑃1 − 𝑃4 are
also shown in the figure, where 𝑃2 is the point with the highest local
quantity |𝒖| along the centerline. Note that |𝒖| is not averaged over
the complete centerline, because after 𝑃3 the computational domain
starts to deviate slightly from the 3D model used for measurements.
The outlets of the MRV measurements are widened to assure a smooth
connection to the MRV devices, which also deforms the bulge slightly,
cf. Section 2.2. Therefore, |�̄�| is computed for all points between the
inlet and 𝑃3.

Computational grids with three resolutions are investigated, i.e., a
coarse grid with 𝛿 𝑥 = 𝑑∕50 and a total number of 𝑁𝑐 = 5 ⋅ 106 cells,
a medium grid with 𝛿 𝑥 = 𝑑∕100 and 𝑁𝑚 = 40 ⋅ 106 cells, and a fine
grid with 𝛿 𝑥 = 𝑑∕200 and 𝑁𝑓 = 300 ⋅ 106 cells. The results for |�̄�|
are summarized in Table 2, where the deviation of |�̄�| to the next
coarser grid is provided in the last column. Whereas the deviation of
|�̄�| between the medium and coarse grid is |�̄�|𝑚𝑒𝑑 𝑖𝑢𝑚−|�̄�|𝑐 𝑜𝑎𝑟𝑠𝑒

|�̄�|𝑚𝑒𝑑 𝑖𝑢𝑚 ⋅ 100 = 0.7%,

it reduces to only |�̄�|𝑓 𝑖𝑛𝑒−|�̄�|𝑚𝑒𝑑 𝑖𝑢𝑚
|�̄�|𝑓 𝑖𝑛𝑒 ⋅ 100 = 0.1% between the fine and

medium grid. Since a gain in accuracy of only 0.1% does not justify
the increased computational costs from 𝑁𝑚 to 𝑁𝑓 , the medium grid
is the most reasonable choice. In fact, |�̄�| of the simulation with the
medium grid deviates only by 3.3% from the MRV measurement.

A common indicator for assessing the near-wall resolution is 𝑦+ =
𝑢𝜏 ⋅ 𝑦∗∕𝜇, where 𝑦∗ is the wall distance, and 𝑢𝜏 =

√

𝜎𝑊 𝑆 𝑆∕𝜌 the friction
velocity. A 𝑦+ value around 1 is required for resolving the viscous
sublayer. The maximum values of the three grids are shown in Table 2,
i.e., 𝑦+𝑐 < 7, 𝑦+𝑚 < 3, and 𝑦+𝑓 < 1. It is worth noting that in case of the
medium grid in the majority of the flow field 𝑦+𝑚 < 1 is observed. That is,
1 < 𝑦+𝑚 < 3 is only reached at very few cells, e.g., near 𝑃2. If one weighs
the additional computational costs for further refinement against the
relatively small further reduction of the 𝑦+ values, it is justified to use
the grid with the medium resolution for the remaining simulations.

The choice for using the medium grid is further underlined by an
analysis of the near-wall resolution for |𝒖| in cross-sectional areas at
𝑃2. In Fig. 3(b), which shows these areas for the coarse, medium, and
fine grid, it can be seen that the main flow characteristics are captured
by all three simulations. However, the profiles of |𝒖| in Fig. 3(c) along
5 
Fig. 3. Analysis of the grid resolution.

the dashed lines between 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 from Fig. 3(b) reveal that the
profile based on the simulation with the coarse grid (green) misses the
turning point at 𝑦𝑡, which is captured well by the simulations based
on the medium (blue) and fine (orange) grids. The profile of the MRV
measurements (red) highlights the challenge of the method in general,
which has already been mentioned in Section 1, i.e., a good accuracy
near the centerline, but difficulties in measuring near-wall velocities.

3.2. Analysis of different inflow conditions for a Newtonian fluid

In this section, the influence of the different inflow conditions that
have been introduced in Section 2.2 is analyzed for simulations with a
Newtonian fluid. Fig. 4(a) shows |𝒖| at the inflow area. The interpolated
inflow condition determines the centerline velocity and interpolates the
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Fig. 4. Analysis of the velocity magnitude |𝒖| and normalized total pressure 𝑝𝑡𝑜𝑡∕𝑝𝑖𝑛𝑙𝑡𝑜𝑡
to evaluate different inflow conditions.

velocities between the centerline and the wall. The nearest-neighbor
algorithm yields a similar velocity magnitude near the centerline, but
the near-wall velocities deviate from the interpolated inflow condition.
Notably, the velocities are unbalanced on either side of the dashed line.
The parabolic inflow condition has the highest centerline velocities.

A closer look at the inflow velocity profiles is given in Fig. 4(b).
While the profile of the parabolic inflow condition is – as expected
6 
– symmetric with an excessive center velocity, and the profile of the
interpolated inflow condition is nearly symmetric, the inflow condition
based on the nearest-neighbor algorithm shows again no symmetric
behavior.

Fig. 4(c) compares the centerline velocity magnitude |𝒖| from simu-
lations using the three inflow conditions with the MRV measurements.
In contrast to the grid refinement study, this comparison focuses on the
region between the inlet and 𝑃4 (see Fig. 3(a)). Despite the differences
between the MRV geometry and simulation domain, the general trend
of centerline velocities when exiting the bulge and re-entering the
vessel towards Outlet 1 is visible up to 𝑃4.

The simulation using the interpolated inflow condition closely
matches the MRV measurements, except for slight underpredictions
near 𝑃2. Similarly, the nearest-neighbor inflow condition also shows
good agreement, except for minor underpredictions near 𝑃1. In contrast,
the simulation results using the parabolic inflow condition results in
large deviations from the MRV measurements between the inlet and
𝑃3. However, beyond 𝑃3, the flow appears to recover, as no substantial
differences are observed among the three simulations.

A quantitative assessment of the centerline velocities is given with
the help of the mean absolute percentage error (MAPE) 𝑒𝑀 𝐴𝑃 𝐸
𝑒𝑀 𝐴𝑃 𝐸 = 1

𝑁

𝑁
∑

𝑖=0

(

∥ 𝒖|LB(𝑖) − |𝒖|MRV(𝑖)|
|𝒖|𝑚𝑎𝑥MRV

)

⋅ 100, (13)

where 𝑁 stands for the number of centerline points, and the superscript
𝑚𝑎𝑥 for the maximum value along the centerline. The simulation results
using the interpolated inflow condition have with 𝑒𝑀 𝐴𝑃 𝐸 = 3.12% the
lowest error, followed by 𝑒𝑀 𝐴𝑃 𝐸 = 3.18% for the inflow condition
based on the nearest-neighbor algorithm, and 𝑒𝑀 𝐴𝑃 𝐸 = 9.85% for the
parabolic inflow condition.

The distributions of 𝑝𝑡𝑜𝑡∕𝑝𝑖𝑛𝑙𝑡𝑜𝑡 along the centerline for simulations
based on the three inflow conditions are shown in Fig. 4(d), where
𝑝𝑖𝑛𝑙𝑡𝑜𝑡 is the total pressure at the center of the inlet area. Note that
a comparison to MRV data is not possible, since only velocity fields
are measured. The simulations with the inflow condition based on the
nearest-neighbor algorithm and the interpolated inflow condition have
a similar distribution of the normalized total pressure. In fact, the total
pressure of the results based on the nearest-neighbor inflow increases
slightly near 𝑃2 due to the larger peak velocities compared to the case
with the interpolated inflow condition (See Fig. 4(c)). However, the
distribution of the normalized total pressure for the simulation with the
parabolic inflow condition is characterized by a local minimum near 𝑃2,
and a much lower total pressure after 𝑃3, compared to the other two
cases.

The question remains whether or not the previously mentioned
deviations affect the bulge of the aneurysm. Therefore, its influence on
the distribution of the WSS and the WNS in the vicinity of the bulge
is analyzed. Fig. 5(a) presents the WSS magnitude on the blood vessel
surface for the three simulations. To aid orientation, surface locations
𝑆1-𝑆5 (marked in Fig. 5(a)) correspond to characteristic regions of WSS,
similar to points 𝑃1-𝑃4 in Fig. 3(a). 𝑆5 is located at the junction where
the vessel branches towards Outlets 1 and 2.

In all three cases, the highest WSS occurs near 𝑆2, which is expected
since the vessel narrows at this location, leading to increased velocity
and a strong velocity gradient near the wall. The interpolated inflow
simulation predicts high WSS values near 𝑆3, 𝑆4, and 𝑆5, whereas
the nearest-neighbor approach results in lower WSS in these regions,
particularly near 𝑆3. The parabolic inflow condition produces WSS
distributions similar to those of the interpolated inflow condition.

Fig. 5(b) shows the WNS distribution mapped onto the vessel sur-
face for all three simulations. The highest WNS values are observed
near 𝑆1 in all cases. Near 𝑆1, the parabolic inflow condition yields
similar WNS values to the interpolated inflow condition, whereas the
nearest-neighbor method underpredicts the WNS.

Additionally, local differences exist between the three cases. For
example, at the vascular bifurcation (highlighted by a dashed circle),
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Fig. 5. Analysis of the WSS and WNS to evaluate different inflow conditions.
Table 3
Minimum and maximum of the WSS components in [𝑃 𝑎] in the 𝑥-, 𝑦-, and 𝑧-directions, as well as the magnitude of the WSS, and the maximum
of the WNS for the simulations with the interpolated inflow condition, the inflow condition based on the nearest-neighbor algorithm, and the
parabolic inflow condition.
Inflow condition 𝜎𝑊 𝑆 𝑆

𝑥,𝑚𝑖𝑛 𝜎𝑊 𝑆 𝑆
𝑥,𝑚𝑎𝑥 𝜎𝑊 𝑆 𝑆

𝑦,𝑚𝑖𝑛 𝜎𝑊 𝑆 𝑆
𝑦,𝑚𝑎𝑥 𝜎𝑊 𝑆 𝑆

𝑧,𝑚𝑖𝑛 𝜎𝑊 𝑆 𝑆
𝑧,𝑚𝑎𝑥 |𝜎𝑊 𝑆 𝑆

𝑚𝑖𝑛 | 𝜎𝑊 𝑆 𝑆
𝑚𝑎𝑥 𝜎𝑊 𝑁 𝑆

𝑚𝑎𝑥

Interpolated −0.0051 0.0045 −0.0029 0.0041 −0.0044 0.0054 0.0073 0.0082 1.017
Nearest-neighbor −0.0043 0.0043 −0.0031 0.0035 −0.0036 0.0039 0.0064 0.0067 1.037
Parabolic −0.0039 0.0038 −0.0038 0.0041 −0.0047 0.0057 0.0072 0.0081 1.016
Table 4
Minimum and maximum of the WSS components in [𝑃 𝑎] in the 𝑥-, 𝑦-, and 𝑧-directions, as well as the magnitude of the WSS, and the maximum
of the WNS for the simulations with Newtonian fluid flow and non-Newtonian flow behavior.
Fluid behavior 𝜎𝑊 𝑆 𝑆

𝑥,𝑚𝑖𝑛 𝜎𝑊 𝑆 𝑆
𝑥,𝑚𝑎𝑥 𝜎𝑊 𝑆 𝑆

𝑦,𝑚𝑖𝑛 𝜎𝑊 𝑆 𝑆
𝑦,𝑚𝑎𝑥 𝜎𝑊 𝑆 𝑆

𝑧,𝑚𝑖𝑛 𝜎𝑊 𝑆 𝑆
𝑧,𝑚𝑎𝑥 |𝜎𝑊 𝑆 𝑆

𝑚𝑖𝑛 | 𝜎𝑊 𝑆 𝑆
𝑚𝑎𝑥 𝜎𝑊 𝑁 𝑆

𝑚𝑎𝑥

Newtonian −0.0051 0.0045 −0.0029 0.0041 −0.0044 0.0054 0.0073 0.0082 1.017
non-Newtonian (CY model) −0.0212 0.0289 −0.0178 0.0187 −0.0270 0.0347 0.0387 0.0489 1.020
a high WNS is expected due to the small curvature radius. Accurate
computation of fluid mechanical quantities in such regions is crucial
for reliable rupture risk assessment. However, in this area, the nearest-
neighbor approach underestimates WNS compared to the interpolated
inflow method, while the parabolic inflow condition results in an
overprediction.

Table 3 emphasizes the tendency of an underpredicted WSS for
the simulation based on the nearest-neighbor algorithm, compared to
the case with the interpolated inflow condition. For the WSS compo-
nents in the 𝑥-, 𝑦-, and 𝑧-directions, whose orientations are shown in
Fig. 3(a), the simulations based on the nearest-neighbor algorithm have
a much smaller range between the minimum and maximum values,
compared to the interpolated inflow condition. This is confirmed by the
minimum and maximum WSS magnitudes in the table, e.g., 𝜎𝑊 𝑆 𝑆

𝑚𝑎𝑥 for
the nearest-neighbor inflow is 18.3% lower than for the interpolated
inflow. However, although the parabolic inflow shows differences to
the interpolated case for some WSS components, the minimum and
maximum values of the WSS magnitude have only minor deviations.

The maximum WNS for the interpolated and parabolic inflow con-
ditions is nearly the same. However, in contrary to the underpredicted
WNS of the case with the nearest-neighbor algorithm at 𝑆1, 𝜎𝑚𝑎𝑥

appears to be larger than the other two cases.
In summary, the simulation results using the interpolated inflow

condition show the best agreement with MRV centerline velocity mea-
surements and provide a reasonable distribution of WSS and WNS.
The parabolic inflow condition tends to overpredict the centerline
velocity between the inflow region and 𝑃3 while underpredicting nor-
malized total pressure near 𝑃 and beyond 𝑃 . The nearest-neighbor
2 3
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inflow condition underpredicts WSS and exhibits inconsistencies in
WNS, making it unsuitable for rupture risk analysis. Therefore, the
interpolated inflow condition is selected for the next section, which
examines non-Newtonian blood flow behavior.

3.3. Comparison of Newtonian and non-Newtonian fluids

Results for simulations with the non-Newtonian CY model are
shown in Fig. 6. The WSS based on the CY model, which is given in
Fig. 6(a), is significantly larger than the WSS based on the Newtonian
flow in Fig. 5(a). These differences are especially visible in the region of
the geometric transition from the narrow vessel at 𝑆2 to the bulge near
𝑆3. The WNS, as shown in Fig. 6(b), is lower compared to the WNS
in the case of the Newtonian flow in Fig. 5(b) at taperings, e.g., the
tapering at 𝑃2, or before bifurcations, e.g, the location inside of the
dashed circle. Such differences between Newtonian and non-Newtonian
models are crucial for a reliable evaluation of the rupture risk.

Fig. 6(c) depicts the distributions of |𝒖| along the centerline for the
simulations with a Newtonian fluid (green) and the CY model for a non-
Newtonian (black) fluid. Generally, the centerline velocity computed
by the CY model tends to be lower than the centerline velocity of
the Newtonian flow. This matches with the observations in [42], who
report much larger centerline velocities of Newtonian blood flow in
acapillary with 70◦ inclination, compared to non-Newtonian flow. The
same trend is observed for the velocity gradients along the centerline.

Fig. 6(d) depicts the distributions of 𝑝𝑡𝑜𝑡∕𝑝𝑖𝑛𝑙𝑡𝑜𝑡 along the center-
line for the simulations with a Newtonian fluid (green) and the CY
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Fig. 6. Analysis of the WSS, WNS, velocity magnitude |𝒖| and normalized total pressure
𝑝𝑡𝑜𝑡∕𝑝𝑖𝑛𝑙𝑡𝑜𝑡 to evaluate Newtonian and non-Newtonian flow behavior.

model for a non-Newtonian (black) fluid. 𝑝𝑡𝑜𝑡∕𝑝𝑖𝑛𝑙𝑡𝑜𝑡 of the case with
the non-Newtonian fluid is generally lower than for the case with
the Newtonian fluid, which comes from the generally lower velocities
shown in Fig. 6(c) and causes a reduction of the dynamic pressure.

Table 4 reveals that the CY model yields a 6–7-fold greater WSS than
the Newtonian model, which matches with the observations in [21],
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where differences in the WSS distribution between Newtonian and non-
Newtonian blood models in an artery tree are investigated. Table 4 also
shows, that the maximum WNS value of the CY model is only slightly
higher compared to the Newtonian case.

4. Summary and discussion

In this study, MRV measurements were coupled with CFD simu-
lations to develop a new method for analyzing cerebral aneurysms,
leveraging the strengths of both approaches. The 5-fold scaled geometry
allows for accurate, patient-specific inflow conditions, while the simu-
lation provides highly resolved flow data across the entire domain. This
enables better near-wall velocity and WSS estimation, which would be
less accurate even with the scaled measurements, and allows for the
computation of quantities that cannot be measured directly, such as
the 3D pressure field. The method mitigates the individual weaknesses
of each approach: the low resolution of MRV measurements and the
risk of incorrect flow topologies in simulations due to inaccurate inflow
conditions.

The proposed method was tested using a reconstructed geometry
from a patient with a cerebral aneurysm. Three inflow conditions were
evaluated:

1. Interpolated inflow
MRV data were interpolated onto the simulation grid, with zero-
velocity points added at walls to enforce the no-slip condition if
measurements points exceed the simulation domain.

2. Nearest-neighbor inflow
Each grid cell was assigned the velocity of the nearest MRV
measurement point.

3. Parabolic inflow
A parabolic velocity profile was prescribed at the inlet.

A grid refinement study was first conducted using the interpolated
inflow condition to determine the resolution needed to accurately cap-
ture both near-wall and centerline velocities. Next, simulation results
using all three inflow conditions were compared to MRV measurements.
The interpolated inflow condition provided the best agreement with
centerline velocity magnitudes. The nearest-neighbor inflow condition
resulted in underpredictions of WSS and inconsistencies in WNS. The
parabolic inflow condition led to overpredictions in centerline velocity
and underpredictions in total pressure distribution. Additionally, it has
been illustrated how the MRV measurements fail to realistically capture
near-wall velocities for computing the WSS.

Based on these findings, the interpolated inflow condition was
used to compare Newtonian and non-Newtonian flow models. The
non-Newtonian model exhibited lower centerline velocities and total
pressure compared to the Newtonian case, consistent with observations
in [42]. Additionally, the CY model predicted higher WSS, particularly
near the transition from the narrow vessel to the aneurysmal bulge. The
WNS of the non-Newtonian model was also lower at vessel taperings
and before bifurcations compared to the Newtonian case.

The grid refinement study (Section 3.1) addressed question 1 from
Section 1, determining the required grid resolution for accurate sim-
ulations. To maintain simplicity in implementing the interpolated and
nearest-neighbor inflow conditions, uniformly refined grids were used,
similar to those in [43], which inspired this study. Future work could
explore locally refined grids to further improve accuracy while ensuring
𝑦+ < 1 across the entire domain without excessive grid cell increases.

Additionally, the simulations assumed rigid walls with static grids,
whereas in vivo conditions involve vessel wall compliance [44]. Cur-
rently, the LB method in the m-AIA framework does not support
fluid–structure interaction. Even if vessel wall compliance were in-
tegrated, the mechanical properties of the wall, which are not yet
measurable, would need to be determined. Advances in MRV resolution
may eventually allow estimation of these properties from wall motion,
as suggested in [45].
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The results in Section 3.2 demonstrated that simulations using the
interpolated inflow condition accurately reproduced centerline veloc-
ities from MRV measurements, addressing question 2 from Section 1.
Additionally, they outperformed the other inflow conditions, answering
question 3. While the nearest-neighbor and parabolic inflow conditions
require less effort to implement, the accuracy gain from interpolation
justifies the additional complexity.

In this study, steady flow conditions allowed all inflow profiles to be
recomputed before simulation. However, patient-specific flow repli-

cation requires unsteady, pulsatile flow conditions. Future work could
test the method with time-resolved MRV measurements [46], where
nflow conditions would need periodic updates. Under these conditions,
he interpolated profile would likely become less symmetric, while the

parabolic profile would remain computationally simpler since it can be
caled with a pulsatile function.

The results in Section 3.3 highlighted the importance of using
on-Newtonian models for accurately determining WSS, addressing

question 4 from Section 1. In particular, the CY model predicted higher
WSS near the transition from the narrow vessel to the bulge, which is
critical for rupture risk assessment and aligns with findings from [21].
Blood, like the non-Newtonian model fluid, behaves as a shear-thinning
fluid. On the centerline the shear rate is particularly low due to velocity
radients near zero, therefore the viscosity is increased compared to a
ewtonian fluid. Near the walls the gradients are high, so that the shear

ate is high and the viscosity is low. This results in a tendency of the
flow increasing the velocities toward the wall and also the gradient and
he WSS and consequently reducing the velocity on the centerline, with

respect to a Newtonian profiles.
Since the method has been tested on only a single geometry, further

validation using additional patient data is needed to generalize the
findings. Nonetheless, integrating MRV-based inflow conditions with
non-Newtonian LB simulations has demonstrated strong potential as a
foundation for personalized cerebral aneurysm assessments, including
rupture risk evaluation and implant design, such as flow diverters or
stents.

5. Conclusion

In this study, a method combining MRV measurements and CFD
simulations was developed to leverage patient-specific inflow data
and provide high-resolution flow analysis for cerebral aneurysms. The
interpolated inflow condition demonstrated superior accuracy in re-
producing MRV measurements compared to parabolic and nearest-
neighbor approaches, which is more important than the lower imple-

entation effort of the other two inflow conditions. Additionally, the
ncorporation of non-Newtonian models, particularly the CY model,
roved essential for accurately capturing WSS distributions, especially
n critical regions such as vessel taperings and aneurysm bulges. These
indings highlight the potential of this method to improve patient-
pecific diagnostics, assess rupture risk, and guide the design of medical
evices such as stents or flow diverters.

To further advance this approach, future studies should validate
the method with a larger dataset of patient geometries and investigate
its performance under unsteady, pulsatile flow conditions using time-
esolved MRV measurements. Incorporating locally refined grids near

vessel walls could enhance accuracy while maintaining computational
fficiency. Expanding the method to include fluid–structure interac-

tions by coupling LB simulations with structural solvers could also offer
a more realistic representation of vessel wall compliance, particularly
as advancements in MRV resolution enable better estimation of wall
properties. These developments would pave the way for a more robust
and personalized evaluation of aneurysm rupture risk and treatment

planning.
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