Adsorption-controlled growth of BiMnO₃ films by molecular-beam epitaxy J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, and D. G. Schlom Citation: Appl. Phys. Lett. 96, 262905 (2010); doi: 10.1063/1.3457786 View online: https://doi.org/10.1063/1.3457786 View Table of Contents: http://aip.scitation.org/toc/apl/96/26 Published by the American Institute of Physics ## Articles you may be interested in Adsorption-controlled molecular-beam epitaxial growth of $BiFeO_3$ Applied Physics Letters **91**, 071922 (2007); 10.1063/1.2767771 Tunable band gap in $Bi(Fe_{1-x}Mn_x)O_3$ films Applied Physics Letters 96, 192901 (2010); 10.1063/1.3427499 Optical band gap of $BiFeO_3$ grown by molecular-beam epitaxy Applied Physics Letters 92, 142908 (2008); 10.1063/1.2901160 High-mobility BaSnO₃ grown by oxide molecular beam epitaxy APL Materials 4, 016106 (2016); 10.1063/1.4939657 The adsorption-controlled growth of LuFe₂O₄ by molecular-beam epitaxy Applied Physics Letters 101, 132907 (2012); 10.1063/1.4755765 Epitaxial growth and properties of metastable BiMnO₃ thin films Applied Physics Letters 84, 91 (2004); 10.1063/1.1636265 ## Adsorption-controlled growth of BiMnO₃ films by molecular-beam epitaxy J. H. Lee, ^{1,2} X. Ke, ³ R. Misra, ³ J. F. Ihlefeld, ² X. S. Xu, ⁴ Z. G. Mei, ² T. Heeg, ¹ M. Roeckerath, ⁵ J. Schubert, ⁵ Z. K. Liu, ² J. L. Musfeldt, ⁴ P. Schiffer, ³ and D. G. Schlom ¹Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA ²Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA (Received 20 February 2010; accepted 4 June 2010; published online 2 July 2010) We have developed the means to grow BiMnO₃ thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO₃ may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003°). Optical absorption measurements reveal that BiMnO₃ has a direct band gap of 1.1 ± 0.1 eV. © 2010 American Institute of Physics. [doi:10.1063/1.3457786] Multiferroic materials are being studied for their rich properties, fascinating physics, and application potential. Bismuth manganite, BiMnO₃, is a well-known, but controversial multiferroic. Early first-principles calculations suggested that BiMnO₃ might be simultaneously ferroelectric and ferromagnetic, arising from bismuth 6*s* lone pairs and magnetic ordering of manganese. Subsequent experiments confirmed multiferroism in thin films. The prediction of its ferroelectricity was based on the reported noncentrosymmertic *C*2 space group of BiMnO₃. Recent calculations and experiments, however, find that BiMnO₃ belongs to the centrosymmetric *C*2/*c* space group and therefore stoichiometric BiMnO₃ may not be a multiferroic at all. 9,10 To better establish the properties of BiMnO₃, we have grown films of it by reactive molecular-beam epitaxy (MBE) using adsorption-controlled growth conditions. Adsorption-controlled growth conditions are the standard way of growing phase-pure compound semiconductors; ¹¹ it has also been applied to the growth of ferroelectric oxide thin films. ^{12,13} In this letter, we first describe the adsorption-controlled growth of single phase BiMnO₃ films by controlling bismuth overpressure, substrate temperature, and oxidant partial pressure. The ferromagnetic properties and optical absorption spectrum of the grown films are then reported. The pressure-temperature region for the adsorption-controlled growth of BiMnO₃ was calculated using the CALPHAD approach. ¹⁴ It was empirically established using *in situ* reflection high-energy electron diffraction (RHEED) and confirmed by *ex situ* four circle x-ray diffraction (XRD). Figure 1 shows a calculated Ellingham diagram representing the phase stability regions of (I) BiMnO₃+Mn₃O₄, (II) BiMnO₃, and (III) BiMnO₃+Bi₂O_{2.5} as a function of substrate temperature and O₂ overpressure. The boundaries between regions I, II, and III were calculated with the Gibbs free energy functions of the gas phase containing various bismuth and Bi–O species and the stable and metastable manganese and bismuth oxides. ¹⁵ Unfortunately there is no Gibbs free energy of formation reported for BiMnO₃ or Bi₂O_{2.5}. First-principles calculations, using the generalized gradient approximation (GGA) and GGA plus Hubbard U (GGA+U) method, predicted the enthalpy of formation of BiMnO₃ to be between +400 J/mol and +4000 J/mol of BiMnO₃ with respect to Bi₂O₃ and Mn₂O₃, respectively. ¹⁶ Since there is no detailed crystal structure of Bi₂O_{2.5} available for first-principles calculations, we assume its enthalpy of formation to be +100 J/mol or +4500 J/mol with respect to bismuth and Bi₂O₃, as assumed in Ref. 13. The phase stability region was calculated using THERMOCALC¹⁷ with the partial pressure of bismuth fixed at 2.6×10^{-10} atm, which FIG. 1. (Color online) Calculated Ellingham diagram and RHEED patterns collected along the [110] azimuth of SrTiO $_3$ during the deposition of BiMnO $_3$ at different temperatures and oxygen partial pressures. Solid lines represent phase boundaries using +4000 J/mol and +100 J/mol formula unit Gibbs free energies for BiMnO $_3$ and Bi $_2$ O $_2$, respectively, specifying the narrowest growth window possible. Dashed lines are for +400 J/mol and +4500 J/mol formula unit, indicating the approximate uncertainty in width of the growth window. Phase stability between Bi $_x$ O $_y$ gases and BiMnO $_3$ +Mn $_3$ O $_4$, BiMnO $_3$, and BiMnO $_3$ +Bi $_2$ O $_2$, condensed phases is represented by regions I, II, and III, respectively. ²Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ⁴Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA ⁵Institute of Bio- and Nano-Systems (IBNI-IT), JARA-Fundamentals of Future Information Technology, Research Centre Jülich, D-52425 Jülich, Germany a) Electronic mail: schlom@cornell.edu. FIG. 2. (Color online) (a) θ -2 θ XRD scans of BiMnO₃ films grown on (001) SrTiO₃ at an oxidant background pressure of 1×10^{-6} Torr and the 3:1 Bi:Mn flux ratio stated above. The difference was that one film was grown in $\sim10\%$ ozone directly out of an ozone generator at $T_{\rm sub}$ =590 °C whereas the other was grown using distilled ozone ($\sim80\%$ ozone) at $T_{\rm sub}$ =630 °C. Substrate peaks are marked with an asterisk . (b) A close-up of the 001 peak, showing a clear difference in the out-of-plane lattice constant. corresponds to the pressure at the plane of the substrate for an incident bismuth flux of 5.5×10^{13} atom/(cm² s). ¹⁸ BiMnO₃ thin films were deposited on buffered-HF treated (001) SrTiO₃ (Ref. 19) and (110) DyScO₃ substrates in a similar manner to previous adsorption-controlled oxides by MBE. 12,13 The volatile bismuth and oxygen components were supplied continuously and the nonvolatile component (manganese) was supplied in doses corresponding to individual (MnO₂) monolayers making up the $BiO-MnO_2-BiO-MnO_2-\cdots$ stacking sequence along the [001] pseudocubic growth direction of the BiMnO₃ perovskite structure. Due to the narrow growth window for phasepure BiMnO₃ growth (region II in Fig. 1), the substrate temperature was monitored in situ by measuring the absorption edge of the SrTiO₃ substrate.²⁰ The thermodynamic predictions were verified by investigating a horizontal slice through Fig. 1 at constant bismuth [bismuth flux=5.5] $\times 10^{13}$ Bi/(cm² s)] and oxygen (O₂+~10% O₃ background pressure = 1×10^{-6} Torr) overpressure during the deposition of Bi-Mn-O over a temperature range of 580-690 °C and a fixed Bi:Mn flux ratio of 3:1. The in situ RHEED patterns collected along the (110) azimuthal direction of (001)oriented SrTiO₃ delineating the three regions are superimposed in Fig. 1. Above 650 °C (region I), RHEED spots are observed and can be indexed to diffraction from (101)oriented Mn₃O₄. The presence of this phase was verified by ex situ XRD. Between 610 and 640 °C (region II), phasepure BiMnO₃ can be grown. Below 610 °C (region III), additional spots form, which can be indexed by ex situ XRD as (001)-and (110)-oriented Bi₂O_{2.5}. The occurrence of these spots corresponds to the phase boundary separating region II and III. A change in bismuth flux or oxygen activity results in a shift in the growth window of single-phase BiMnO₃ (region II in Fig. 1). The calculated O₂ overpressures compare well with what is expected given the enhanced activity of O₃ and our directed gas inlet that locally increases the oxygen pressure at the substrate surface.¹⁸ The structure of two 29 nm thick BiMnO₃ films deposited on (001) SrTiO₃ was characterized. Both films were grown under adsorption-controlled conditions (region II in Fig. 1). θ -2 θ XRD scans of both films in Fig. 2(a) reveal them to be phase-pure and epitaxial. The full width at half FIG. 3. (Color online) Field-cooled and zero field-cooled magnetization of the same $BiMnO_3$ films as Fig. 2 grown using $\sim 10\%$ ozone and distilled ozone. (Inset) Magnetic hysteresis of these films at 5 K. maximum (FWHM) of the ω rocking curve of the pseudocubic 002 film peaks are equal to 80 arc sec (0.02°) and 36 arc sec (0.01°), which are the same as the underlying SrTiO₃ substrates. Both films show clear thickness fringes [Fig. 2(b)], corresponding to a film thickness of 29 ± 2 nm. The out-of-plane lattice constant was calculated to be 4.01 ± 0.01 Å for the BiMnO₃ films grown in ~10% ozone and 3.98 ± 0.01 Å for the film grown in distilled ozone. The extended out-of-plane lattice constants result from the lattice mismatch between the $SrTiO_3$ substrate (a=3.905 Å) and the BiMnO₃ film $(a_{\text{pseudocubic}}=3.95 \text{ Å})$. The $\sim 0.03 \text{ Å}$ difference in out-of-lattice constants between the two samples is a result of the different oxidating atmosphere during growth. The films grown in $\sim 10\%$ ozone show a longer lattice constant than the films grown in distilled ozone. Rutherford backscattering spectrometry confirms that the ratio of Bi:Mn of these films is 1:1 within the 5% experimental error of the measurements. Magnetic measurements on the same two BiMnO $_3$ films are shown in Fig. 3. Both films exhibit clear ferromagnetic hysteresis loops. The oxygen-rich films tend to show lower $T_{\rm C}$ and saturation magnetization than the oxygen-stoichiometric films. BiMnO $_3$ films grown in ~10% ozone showed a ferromagnetic transition at ~105 K, which is close to $T_{\rm C}$ of bulk BiMnO $_3$, and a magnetization value of 2.5 $\mu_{\rm B}/{\rm Mn}$ at 5 K. In contrast, films grown in distilled ozone showed a $T_{\rm C}$ at ~95 K and a magnetization value of 1.9 $\mu_{\rm B}/{\rm Mn}$ at 5 K. A depression of $T_{\rm C}$ has been reported in films grown by pulsed-laser deposition. We attribute it to oxygen stoichiometry since the Bi:Mn ratio was observed not to influence the transition temperature. Measurements on bulk BiMnO $_{3+x}$ (0 < x < 0.16) samples also observed this depression of $T_{\rm C}$ and magnetization in samples with higher oxygen content. The optical spectra of BiMnO₃ films were measured in transmittance using a Perkin–Elmer Lambda-900 spectrometer (3000–190 nm and 0.41–6.53 eV) with bare substrates as references. The film on DyScO₃ had a rocking curve FWHM of 11 arc sec (0.003°), comparable to the underlying DyScO₃ substrate and over $100 \times$ narrower than any reported BiMnO₃ film.^{3–5} Absorption was calculated as $\alpha(E) = -(1/d)\ln[T(E)]$, where d is the film thickness, T is the measured transmittance, and E is the energy of the light. Figure 4 displays the absorption spectrum of BiMnO₃ at 300 and 4 K. The onset of optical absorption in BiMnO₃ is \sim 0.75 eV (1650 nm), ²² much lower than the \sim 2.2 eV FIG. 4. (Color online) Optical absorption spectrum of 33 nm thick BiMnO₃ films grown on (001) SrTiO₃ and (110) DyScO₃ at $T_{\rm sub}$ =640 °C in a background pressure of 1×10^{-6} Torr of distilled ozone were combined to create a composite absorption curve and were identical in the overlap regime. (Inset) Charge gap extraction from 300 K absorption. (560 nm) onset in BiFeO₃ thin films. 13,23,24 Peaks occur at \sim 1.6 eV (780 nm) and \sim 5.5 eV (230 nm), with a broad shoulder near 4 eV. The near-infrared feature in perovskite manganites has been studied extensively.^{25–28} Relevant predictions from first-principles electronic structure calculations for BiMnO3 include strong Mn-O hybridization, a stereochemically active Bi lone pair that mixes Bi and O states, and insulating behavior in calculations that employ strong exchange correlation. 2,9,29,30 Several very different assignments might reasonably account for the 1.6 eV near infrared excitation in BiMnO₃: (i) on-site excitations between crystal field split 3d levels, (ii) charge transfer excitations involving strongly hybridized Mn³⁺ and oxygen states, or (iii) transitions between localized Hubbard bands. Based upon comparison with electronic structure calculations, ^{2,9,23,30} the experimental spectrum of chemically similar materials with Mn³⁺ centers in locally distorted octahedral environments such as LaMnO₃, ^{25–28} and the overall intensity ($\alpha \sim 1.05$ $\times 10^{-5}$ cm⁻¹), we assign the near infrared peak at ~ 1.6 eV to charge transfer excitations between mixed O 2p and Mn 3d states. The limited temperature dependence of the 1.6 eV structure supports this assignment. A plot of $(\alpha E)^2$ versus energy (inset, Fig. 4) places the 300 K charge gap in BiMnO₃ at $\sim 1.1 \pm 0.1$ eV.²² Our fitting indicates that BiMnO₃ has a direct band gap. The relatively small direct band gap of BiMnO₃ could be relevant to ferroelectric solar cell applications, e.g., creating a solid solution with BiFeO₃ with E_{g} =2.7 eV (Refs. 13, 23, and 24) could result in a band gap ideally matched to the solar spectrum. According to electronic structure calculations, ³⁰ the charge excitations are predicted to be strongly spin polarized. The gap is determined by majority carriers, and minority states are involved only above 3 eV. Higher energy excitations [above 3.7 eV (330 nm)] are assigned as O $2p \rightarrow Mn$ 3d charge transfer, with some mixing of Bi 6p levels above 3 eV. The aforementioned electronic excitations sharpen and blueshift slightly with decreasing temperature (Fig. 4). We find no obvious anomalies at the 105 K Curie temperature within our sensitivity, indicative of modest charge-spin interactions. We gratefully acknowledge the financial support from the National Science Foundation through Grant No. DMR-0507146 and the MRSEC program (Grant No. DMR-0820404) and from the U.S. DOE through Grant No. DE-FG02-01-ER45885(UT). ¹W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) **442**, 759 (2006). ²N. A. Hill and K. M. Rabe, Phys. Rev. B **59**, 8759 (1999). A. Moreira dos Santos, A. K. Cheetham, W. Tian, X. Pan, Y. Jia, N. Murphy, J. Lettieri, and D. G. Schlom, Appl. Phys. Lett. 84, 91 (2004). A. Sharan, J. Lettieri, Y. Jia, W. Tian, X. Pan, D. G. Schlom, and V. Gopalan, Phys. Rev. B 69, 214109 (2004). ⁵J. Y. Son and Y.-H. Shin, Appl. Phys. Lett. **93**, 062902 (2008). ⁶T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, and Y. Syono, J. Solid State Chem. **145**, 639 (1999). ⁷A. Moreira dos Santos, A. K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, and C. N. R. Rao, Phys. Rev. B **66**, 064425 (2002). ⁸K. Kodama, S. Iikubo, S. Shamoto, A. A. Belik, and E. Takayama-Muromachi, J. Phys. Soc. Jpn. 76, 124605 (2007). ⁹P. Baettig, R. Seshadri, and N. A. Spaldin, J. Am. Chem. Soc. **129**, 9854 (2007). ¹⁰A. A. Belik, T. Kolodiazhnyi, K. Kosuda, and E. Takayama-Muromachi, J. Mater. Chem. 19, 1593 (2009). ¹¹J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy (Academic, Boston, 1993). ¹²D. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, and X. Q. Pan, Mater. Sci. Eng., B 87, 282 (2001). ¹³J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, Appl. Phys. Lett. 92, 142908 (2008). ¹⁴L. Kaufman, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 25, 141 (2001). ¹⁵Scientific Group Thermodata Europe, in *Thermodynamic Properties of Inorganic Materials*, Landolt-Börnstein, New Series, Group IV Vol. 19, edited by Lehrstuhl für Theoretische Hüttenkunde (Springer, Berlin, 1999) ¹⁶Z. G. Mei, S. Shang, Y. Wang, D. G. Schlom, and Z. K. Liu (unpublished). ¹⁷J. O. Andersson, T. Helander, L. H. Hoglund, P. F. Shi, and B. Sundman, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 26, 273 (2002). ¹⁸D. G. Schlom and J. S. J. Harris, in *Molecular Beam Epitaxy: Applications to Key Materials*, edited by R. F. C. Farrow (Noyes, Park Ridge, NJ, 1995), pp. 505–622. ¹⁹G. Koster, B. L. Kropman, G. Rijnders, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 73, 2920 (1998). ²⁰kSA BandiT, k-Space Associates, Ann Arbor, MI. ²¹S. Fujino, M. Murakami, S.-H. Lim, L. G. Salamanca-Riba, M. Wuttig, and I. Takeuchi, J. Appl. Phys. 101, 013903 (2007). ²²The ± 0.1 eV error bars on the gap and the background absorption in BiMnO₃ come from the small film thickness (and the associated challenges in growing BiMnO₃ films with thicknesses >33 nm). Fortunately, they do not obscure the most important physics. ²³S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett. **92**, 091905 (2008). ²⁴A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, Appl. Phys. Lett. 92, 121915 (2008). ²⁵K. Tobe, T. Kimura, Y. Okimoto, and Y. Tokura, Phys. Rev. B **64**, 184421 (2001). ²⁶M. A. Quijada, J. R. Simpson, L. Vasiliu-Doloc, J. W. Lynn, H. D. Drew, Y. M. Mukocskii, and S. G. Karabashev, Phys. Rev. B 64, 224426 (2001). ²⁷M. W. Kim, P. Murugavel, S. Parashar, J. S. Lee, and T. W. Noh, New J. Phys. 6, 156 (2004). ²⁸N. N. Kovaleva, A. V. Boris, C. Bernhard, A. Kulakov, A. Pimenov, A. M. Balbashov, G. Khaliullin, and B. Keimer, Phys. Rev. Lett. **93**, 147204 (2004) ²⁹R. Seshadri and N. A. Hill, Chem. Mater. **13**, 2892 (2001). ³⁰P. Baettig, R. Seshadri, and N. A. Spaldin, private communication (September 26, 2008).