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A B S T R A C T

This work investigates the effects of tangent polar activity on the conformational and dynamic properties of
entangled polymer melts through Langevin molecular dynamics simulations. We examine systems composed of
all self-propelled, monodisperse linear chains, so that constraint release is considered. The range of activities
explored here includes values where the active reptation theory is applicable, as well as higher activities that
challenge the validity of the theory. Chain conformations exhibit a moderate increase in coil size increase,
which becomes more pronounced at higher activity levels. Under these conditions, a local bond alignment
along the chain contour appears together with a non-homogeneous segmental stretching, and orientation
and stretching of the tube. Dynamically, polar activity induces a molecular-weight-independent diffusion
coefficient, a transient superdiffusive behavior, and an end-to-end relaxation time inversely proportional to
the molecular weight. Finally, our results are summarized in a diagram that classifies the various regimes
of behavior observed in the simulations. Overall, these findings provide valuable insights into the complex
interplay between activity and entanglements, advancing our understanding of active polymer systems and
their potential applications across various fields.
1. Introduction

Active matter comprises individual elements capable of consuming
internal energy or drawing energy from their environment to perform
mechanical work [1,2], leading to non-equilibrium collective behaviors
not typically observed in equilibrium systems [3–6]. There are many
examples of active matter both in biological [7–9] and synthetic sys-
tems [10–12]. Active polymers arise from the collective behavior of
covalently bonded active agents [13], exhibiting unique and complex
dynamics that distinguish them from passive polymers. Activity in poly-
mers can take various forms, including monomer self-propulsion [14],
the action of molecular motors [15,16], or interactions with external
fields [17] and local gradients [18]. The complex interplay between the
magnitude and orientation of active forces and the internal degrees of
freedom of the polymer significantly affects its conformation, relaxation
time, and diffusion. Of the diverse types of active forces that can be
found in polymers, polar active forces — characterized by a tangential
force that induces directed motion along the polymer chain — have
attracted significant interest for their role in biological systems like mi-
crotubules and actin molecules driven by molecular motors [9,19,20].
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These type of active forces also hold promise for synthetic biology and
materials science applications due to their unique properties [21–24].

Most previous theoretical studies on active polar polymers have
focused on dilute conditions [25–28]. Polar activity in single chains
has shown to either increase or decrease overall polymer size, de-
pending on polymer length, activity strength [28–32], hydrodynamic
interactions [33,34], the position of the active monomer block along
the chain [35], and the relevance of inertia [26,36]. In all cases, polar
activity may induce a progressive deformation where the head is gen-
erally more collapsed than the tail [26]. These findings contrast with
the predictions of simulations and analytical theories for polar active
Rouse chains [22,37], which suggest that chain conformations remain
independent of activity. This contrast underscores the importance of
model details, such as excluded volume interaction and the form of
bonded potentials, which can significantly impact system properties.
Both simulations and theory predict a superdiffusive regime for the
center-of-mass mean-square displacement, followed by an enhanced
diffusive regime at longer times, similar to the behavior of active
Brownian particles (ABP) [38].
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Previous studies have also investigated two-dimensional active po-
ar polymer melts under dense conditions [16,39,40], revealing com-

plex phase behaviors and non-equilibrium steady states. Ubertini et al.
[41] recently examined the conformation and dynamics of polar ac-
ive polymers in dense three-dimensional conditions, concluding that
hain conformations and dynamics display universal characteristics,
ndependent of whether chains are in dilute solutions or melts. Miranda
t al. [42] explored active flexible rings in bulk and with lateral confine-

ment, observing the emergence of self-organized complex dynamical
states. Notably, the extension to three-dimensional systems adds sig-
nificant complexity — not only computationally but also through the
critical role of entanglements, which are absent in dilute conditions and
ess prominent in two-dimensional systems. Unraveling the interplay
etween activity, entanglement, and spatial dimensionality is essential
or a comprehensive understanding of polar active polymers.

In equilibrium melts, the motion of linear polymer chains with
molecular weight 𝑁 (expressed as the number of monomers) beyond
a threshold 𝑁𝑐 is constrained by the inability to cross neighboring
molecules [43]. These topological constraints, or entanglements, pro-
foundly alter the dynamics of equilibrium polymers: relaxation times
and viscosities shift from scaling linearly with molecular weight for
𝑁 < 𝑁𝑐 to scaling as 𝑁3.4 for linear polymers, and even exponentially
for branched polymers [44,45]. The tube theory, the gold standard
model for understanding entangled polymer dynamics [46,47], suggests
hat neighboring chains confine a probe chain within a tube-like region,
onstraining lateral motion beyond a lengthscale 𝑎 (the tube diameter),
hile allowing free diffusion along the axis of the tube (the primitive

path) [47]. Over recent decades, the tube theory has been enhanced
to incorporate additional mechanisms such as contour length fluctua-
tions [48,49], constraint release [50,51] or tube dilation [52,53]. This
refined framework has successfully explained results from experiments
on linear rheology [54], dielectric relaxation [55,56], and neutron spin-
cho [57], both in equilibrium and under non-linear deformation [58].

Ultimately, the tube theory provides a conceptual basis for understand-
ing how surrounding chains constrain the motion of a single polymer
chain, a framework that can also be extended to active polar systems,
where active forces and tube confinement yield novel dynamics.

Building on the tube model, we recently developed an analytical
heory to describe the behavior of entangled polar active chains [59,

60]. For a broad range of small activities that do not disrupt chain
conformations or the entanglement network, this theory predicts a
linear dependence of the viscosity on molecular weight and a diffu-
sion coefficient that is independent of the molecular weight. These
predictions were confirmed through Langevin molecular dynamics sim-
ulations of active polar entangled chains diluted in a mesh of long
passive entangled chains with exceedingly long relaxation times [61].
These simulations also naturally accounted for contour length fluctua-
tions (CLF), i.e. the variations in the length of a polymer chain due to
thermal motion and segmental dynamics.

Constraint release (CR) introduces an additional relaxation mech-
anism, as the confining tube around a polymer chain is not static
but composed of neighboring chains that also move within their own
tubes. As a result, the expected lifetime of entanglements becomes
comparable to the disengagement time due to active reptation. For a
given probe chain, the tube can be destroyed by reptation — when
a chain end reaches any point along the tube — or modified by the
ongoing renewal of the tubes formed by the surrounding chains with
which it is entangled (see Fig. 1). In a melt of polar active polymers
where all chains are active, this CR effect significantly accelerates
the overall system relaxation. Since CR is an intrinsically multi-body
effect, multi-chain Molecular dynamics simulations provide and ideal
framework for exploring its impact [62].

In this work, we investigate the effect of CR on the dynamics of ac-
tive polar polymers in the melt through Langevin molecular Dynamics
imulations of a coarse-grained model, with polar activity uniformly
pplied across all polymer chains in the system. In Section 2, we
 L

2 
describe the coarse-grained model and the method for implementing
the polar activity in our simulations. Section 3 presents an analysis
of the impact of polar activity on the conformation and dynamics of
these polymers, with comparisons to theoretical predictions [60] and
results from previous studies on active diluted chains [26] or active
melts without CR [61]. This section concludes with a phase diagram
summarizing the distinct qualitative behaviors of active polar chains
as a function of Péclet and molecular weight. Finally, in Section 4, we
highlight the key findings of this study. By extending the theoretical
framework to multi-chain simulations and examining the resulting
dynamics, we aim to offer new insights into active polymer systems.

2. Simulation method

We carry out Langevin molecular dynamics (MD) simulations to
study the dynamics and conformations of linear active entangled poly-
mers. Polymers are modeled by the Kremer–Grest (KG) model [63] —a
tandard coarse-grained model for investigating the universal proper-
ies of entangled polymer melts. This model incorporates all the essen-
ial physical features, including chain connectivity, chain uncrossability
entanglements), contour-length fluctuations (breathing modes) and
onstraint release. The KG model describes the polymer chains as a lin-
ar sequence of purely repulsive beads connected by non-linear springs.
on-bonded interactions are modeled by the Weeks-Chandler-Andersen

WCA) potential [64], given by

𝑈WCA(𝑟) =
⎧

⎪

⎨

⎪

⎩

4𝜖
[

(𝜎
𝑟

)12
−
(𝜎
𝑟

)6
]

+ 𝜖 , 𝑟 < 𝑟𝑐 𝑢𝑡
0, 𝑟 ≥ 𝑟𝑐 𝑢𝑡

(1)

where 𝑟 is the distance between two interacting beads, 𝜎 the bead di-
ameter, and 𝜖 the interaction strength. Neighbor beads along a polymer
hain are connected by FENE springs [65], whose potential energy is

given by

𝑈FENE(𝑟) = −𝑘
𝑅2
0
2

log

[

1 −
(

𝑟
𝑅0

)2
]

+ 𝑈WCA(𝑟), (2)

where 𝑘 is the strength of the spring, and 𝑅0 the maximum extensibility
of the spring.

The activity is introduced as an additional force acting on each
monomer, tangent to the polymer contour, as shown in Fig. 1. The
force on each monomer is determined by the position of its two nearest
onnected neighbors as:

𝐟𝑎𝑖 =
𝑓𝑐
𝑏

(

𝐫𝑖+1 − 𝐫𝑖−1
)

, (3)

where 𝑓𝑐 is the magnitude of the active force and 𝑏 = 0.965𝜎 is
he equilibrium value of the bond length. For the end monomers, the
ctive force acts along the bond direction. Consequently, the active
angent force establishes a well defined direction along each polymer,
llowing the ends to be identified as the head — the leading end —
nd the tail — the trailing end. Discretization of the tangent force
hosen in Eq. (3) implies that the modulus of the force acting on each

monomer varies with the local chain conformation, being maximum
when neighbor bonds are aligned and minimum when they adopt an
anti-parallel conformation (see the right panel in Fig. 1).

The evolution of the system is determined by the Langevin equations
of motion for all the beads in the system, that referred to the position
of particle 𝑖 can be expressed as

𝑚𝐫̈𝑖 = −𝛁𝑖𝑈 (𝑟) + 𝐟𝑎𝑖 − 𝜁 𝐫̇𝑖 + 𝐟 𝑟𝑖 (4)

where 𝑚 is the mass of the bead, 𝑈 (𝑟) = 𝑈WCA(𝑟) +𝑈FENE(𝑟) is total po-
tential energy, 𝜁 is the friction coefficient, 𝑘𝐵 is Boltzmann’s constant,

is the temperature and 𝐟 𝑟𝑖 is a Gaussian distributed random force
rocess [66] that satisfies the fluctuation–dissipation theorem [67], i.e.

it has mean ⟨𝐟 𝑟𝑖 (𝑡)⟩ = 𝟎 and variance ⟨𝑓 𝑟𝑖𝛼(𝑡)𝑓
𝑟
𝑗 𝛽 (𝑡′)⟩ = 2𝜁 𝑘𝐵𝑇 𝛿𝑖𝑗𝛿𝛼 𝛽𝛿(𝑡−𝑡′),

ith 𝛼 , 𝛽 = 𝑥, 𝑦, 𝑧. All simulations in this work have been run using the
AMMPS software [68] (version 21 Jul 2020) modified to introduce the
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Fig. 1. Schematic depiction of the polar active force applied in our coarse-grained model, and how it produces a skewed reptation motion to all chains in the system, accelerating
their escape from their tubes, and affecting other multi-chain relaxation mechanisms such as constraint release (CR).
tangent active force.
In the following, we use Lennard-Jones units, so that the funda-

mental quantities 𝜖, 𝑚, 𝜎 and 𝑘𝐵 are all equal to 1, and the derived
characteristic time

√

𝜎2𝑚∕𝜖 is taken as the unit of time. Furthermore,
as in the original work of the KG model [63], we use the parameters 𝑘 =
30𝜖∕𝜎2, 𝑅0 = 1.5𝜎, 𝑏 = 0.97𝜎, 𝜁 = 0.5, and overall monomeric density
𝜌 = 0.85∕𝜎3. We study systems consisting of KG polymers with lengths
𝑁 varying from 50 to 800 monomers per chain. For each molecular
weight 𝑁 , the cubic simulation box side is set to ensure a minimum
length of at least twice the root mean squared equilibrium end-to-
end distance

√

⟨𝑅2
0⟩, where ⟨𝑅2

0⟩ = 𝐶∞𝑁 𝑏2, and the characteristic
ratio 𝐶∞ = 1.88 as known for the Kremer–Grest model [69]. More
details about the systems set up and equilibration are provided in the
Supplementary Material.

To quantify the effect of activity we define the microscopic or
monomeric Péclet number (Pe𝑚) defined as the ratio of the local active
and thermal forces, i.e. Pe𝑚 = 𝑓𝑐𝑏∕(𝑘𝐵𝑇 ) [26,28,29]. In this work,
values of Pe𝑚 spanning 4 orders of magnitude are studied. Furthermore,
since the motion of a polymer chain is governed by different length
scales, it is useful to additionally consider a global Péclet number,
defined as Pe𝑔 = 𝑁Pe𝑚, which depends on the polymer molecular
weight [26,39]. Hydrodynamic interactions are not considered here
since they are not expected to play an important role at the monomer
densities studied in this work.

3. Results and discussion

3.1. Conformation and static properties

3.1.1. Coil average size
The effect of the polar activity on the coil characteristic size is

calculated by averaging the end-to-end distance of all polymers and
normalizing it by the corresponding value at equilibrium 𝑅𝑒0 as shown
in Fig. 2. Overall, polymer conformations are only slightly stretched
by activity, with a relative growth of the end-to-end distance is up to
14% for the highest values of the activity here studied. Qualitatively,
this behavior has an opposite trend to that in the dilute regime, where
both in the presence and absence of inertia, the coil size of long
chains decreases by up to 30% [26,28] in a similar range of activi-
ties. The collapse occurring for the same chains in dilute conditions
is prevented by the large confinement effects provided by the high
density of monomers in the melt. Beyond 𝑁 ≥ 200, entanglements
have a significant effect and seem to slow down the growth of the
coil with activity. Recently reported simulations of the same system
with a higher friction coefficient report a decrease of the coil size
with activity [41]. This is an indication that inertia affects the polymer
static properties. Similar to most simulation of polymer melts, here we
have focused in the underdamped case, and to which extent inertia is
relevant is investigated in some detail in Section 3.3.
3 
The increase of coil size as a function of activity is shown in
Fig. 2(b), where the coil size shows to be almost unperturbed up to a
critical value of the Péclet number, Pe𝑔 ≃ 0.5. For activities larger than
this critical value, a behavior close to universal is found, similar to that
observed in diluted polar active chains [26], including the logarithmic
dependence of the coil size with the activity above the threshold Pe𝑔 , as
depicted by the scaling line shown in Fig. 2(b). Since Pe𝑔 is a function
of the molecular weight, this collapse implies that the critical value of
the monomeric activity Pe𝑚 is smaller for longer chains. Long chains
at high activities show a non-monotonic growth as a function of the
activity, which is most likely related to the later discussed emergence of
local order. Note that although measurable, the elongation is relatively
small for the studied Pe𝑚 values.

3.1.2. Coil progressive deformation
While activity only slightly stretches the overall coil size, a visual

inspection of the chain snapshots in Fig. 3(a) reveals that the heads are
significantly more compact and the tails more elongated, similar to the
dilute case [26]. We quantify this effect by ⟨𝑅̂𝑠⟩, the mean end-to-end
distance of chain segments of length 𝑁𝑠 = 25, which are calculated
along the chain contour and normalized by the size of strands of the
same size at equilibrium. Fig. 3(b) shows ⟨𝑅̂𝑠⟩ as a function of the
segment position along the chain, with 𝑠 = 0 representing the head
and 𝑠 = 𝑁∕𝑁𝑠 the tail of the chain. All curves show an important
increase of the segments elongation towards the tail, which already
means that polar active force is breaking the self-similarity of the
polymer chains in the melt. Besides the very last dangling segment,
the local stretching increases with applied activity, reaching values of
above 60% for the parameters here investigated. Increasing polymer
length shows to decrease the elongation of the segments, which is in
contrast to the dilute case where the progressive elongation depends
on Pe𝑚 and is independent of 𝑁 . This universality was attributed to the
balance between the tension transmitted and accumulated by the polar
activity along the backbone from the head to the segment located at
position 𝑠, and the frictional resistance of the remaining strand between
𝑠 and the tail. In the case of the melt, segments at position 𝑠 belonging
to shorter chains elongate more than segments at the same position 𝑠 of
longer chains (see Fig. 3(a)), indicating that the tension is transmitted
differently along the chain backbone when the polymer is in an active
melt, due to the confinement provided by the neighboring polymers.
This means that, given a certain segment 𝑠, the tension necessary to
stretch it is larger the longer the polymer, or similarly, that the stiffness
of the confining network is larger the longer the building polymers
are (this is to be expected, as the effects of entanglement loss due
to constraint release diminish significantly with increasing molecular
weight).

Fig. 3(c) shows a reasonable overlap of the curves corresponding to
different molecular weights onto a universal shape when the 𝑠 axis is
rescaled by

√

𝑁 . To get some insight on this scaling, we recall that the
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Fig. 2. (a) End-to-end distance normalized with the equilibrium value, (a) as a function of the molecular weight 𝑁 , for all studied activities; (b) as a function of the activity, for
all molecular weights. The dashed line is shown to highlight the logarithmic dependence of the end-to-end vector, as ⟨𝑅𝑒⟩∕𝑅𝑒0 = 𝛼 log(Pe𝑔 ), with 𝛼 = 0.035. The inset in (b) shows
the absolute end-to-end distance, this is normalized with the bead diameter.
Fig. 3. (a) Snapshots of polymer conformations with 𝑁 = 400 at various activities, with color darkness increasing towards the tail. (b,c) Segments end-to-end distance for different
drifts, and chain lengths, (b) as a function of 𝑠, the distance to the head (𝑠 = 0 refers to the head and 𝑠 = 𝑁∕25 to the tail); as a function of 𝑠 normalized by the square root of
the chain molecular weight.
end-to-end distance of a polymer in equilibrium is proportional to
√

𝑁 ,
and this scaling is not significantly modified by the activity (see Fig. 2).
The fact that the same deformation is obtained for segments located at
position 𝑠∕

√

𝑁 in chains of different lengths suggests that the same
average force-drag balance is obtained when the relative location of
the projected position of segment 𝑠 onto the end-to-end vector is also
the same (see a sketch in Fig. S1(a) in the Supplementary Material).
4 
3.1.3. Mesh architecture
In the context of reptation, it is crucial to test whether activ-

ity modifies the underlying entanglement network. For that purpose,
we performed a primitive path analysis (PPA) [70,71] on steady-
state snapshots of all simulated systems, using a modified version of
LAMMPS [72]. From this analysis, we can extract the average length
of the primitive path 𝐿 and, assuming random walk statistics, relate
PP
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Fig. 4. (a) Normalized average tube length 𝐿PP, calculated from Primitive Path Analysis (PPA), as a function of the molecular weight 𝑁 , for different values of the activity,
showing the stretching of the tubes. (b) Relative growth of the primitive path length as a function of the global Péclet number, Pe𝑔 = Pe𝑚𝑁 . Dashed line corresponds to the universal
behavior of Eq. (9). Insets: snapshots of two representative pairs of entangled primitive paths from chains of 𝑁 = 200. Bottom snapshot corresponds to the green highlighted point
with a Pe𝑚 = 0.00625, and top snapshot to the red highlighted point with Pe𝑚 = 2, showing signs of tube elongation due to activity.
it to the diameter of the tube as, 𝑎 = ⟨𝑅2
⟩∕𝐿PP, where ⟨𝑅2

⟩ is the
mean-square end-to-end distance of the chains.

In Fig. 4(a), the average length of the primitive path 𝐿PP, nor-
malized by the molecular weight 𝑁 , is plotted versus the molecular
weight for different values of activity. For reference, the value of
the polymer melt in equilibrium is also displayed, showing the usual
overestimation of the tube length by PPA when the polymer chains are
short. For small values of the activity, Pe𝑚 ≤ 0.0125, the tube length is
almost indistinguishable with respect to the equilibrium primitive path.
With increasing activities, the primitive path gets progressively more
elongated. In Fig. S2 of the Supplementary Material, example snapshots
of primitive path networks after PPA are represented, showing clear
signs of tube elongation at high activities.

To better understand the increase in tube length with activity,
Fig. 4(b) shows the relative increase in the length of the primitive
path with respect to the obtained equilibrium length 𝐿0

PP, plotted as a
function of the global Péclet Pe𝑔 =Pe𝑚𝑁 . The data reveals a seemingly
universal linear increase at low to moderate activities, followed by
saturation at very high values of Pe𝑔 . In the inset of Fig. 4(b), two
snapshots of a representative primitive path configurations are shown
at low and high activities, revealing the tube elongation due to the
activity. This data also shows that the primitive paths extend up to
50% of their size in equilibrium. This is much more that the aver-
age elongation of the end-to-end distance of the individual polymers
which increase a maximum of 10% for the ranges here investigated
(see Fig. 2). This difference suggests that the chains are forming an
inward-folded structure, as evidenced by the snapshots in Fig. 3.

In entangled chains at equilibrium, a tensile force 𝑓 = 𝑘𝐵𝑇 ∕𝑎 acts
on the chain ends to maintain a non-zero length of the primitive path
𝐿0
PP, where 𝑎 is the tube diameter [47]. This tension is balanced by the

entropic recovery of the polymer chain. Tangent active forces introduce
an additional tension along the chain contour, which is responsible for
the elongation of both the primitive path and the segments along the
chain contour. In order to provide an estimation of the length of the
tube we assume that it results from balancing the elongation force of
the active term, 𝑓𝑎, with the elastic retraction of the polymer confined
within the tube, 𝑓𝑒. The total active tension accumulated in the chain
is

𝑓a ∝ 𝑁 𝑓𝑐 , (5)

and tends to stretch the chain inside the tube. The resistance to such
stretching comes from the entropic elasticity of the polymer chain
within the tube, which can be assumed to have a similar nature to the
5 
FENE force that governs the bonded forces, that is,

𝑓𝑒 = 𝑘𝑒
𝐿PP − 𝐿0

PP

1 −
(

𝐿PP
𝐿max
PP

)2
. (6)

Here 𝑘𝑒 = 3𝑘𝐵𝑇 ∕𝑁 𝑏2 is the elastic constant, and 𝐿0
PP the equilibrium

contour length of the primitive path which, according to the tube
theory, is 𝐿0

PP = 𝑁 𝑏2∕𝑎, being 𝑎 the tube diameter, and 𝐿max
PP is the

maximum length of the tube, which we take here as 𝐿max
PP ≃ 1.5𝐿0

PP.
Considering now that 𝑓𝑎 = 𝑓𝑒 we have that

𝑁 𝑓𝑐 =
3𝑘𝐵𝑇
𝑁 𝑏2

𝐿PP − 𝐿0
PP

1 −
(

𝐿PP
𝐿max
PP

)2
(7)

Dividing on both sides by 𝐿0
PP, replacing 𝑓𝑐 with the expression for

Péclet number and simplifying we get:
𝐿PP − 𝐿0

PP

𝐿0
PP

=
𝑁Pe𝑚𝑎

3𝑏

[

1 −
(

𝐿PP
𝐿max
PP

)2
]

(8)

which shows that the relative growth of the tube length 𝐿PP depends
only on the global Péclet number Pe𝑔 = 𝑁Pe𝑚. Active tension acts along
the contour of the chain and not on the primitive path of the tube. The
projection of the active tension on the tube axis is expected to be much
smaller than the one provided along the polymer contour by 𝑓𝑎, such
that we can consider a fit parameter 𝛼 resulting into

𝐿PP − 𝐿0
PP

𝐿0
PP

= 𝛼Pe𝑔
⎡

⎢

⎢

⎣

1 −
(

𝐿PP

1.5𝐿0
PP

)2
⎤

⎥

⎥

⎦

(9)

The black dashed line shown on Fig. 4(b) has been obtained with
𝛼 = 0.00485. More details about the derivation of Eq. (9) can be found
in Section SIII of the Supplementary Material.

3.1.4. Limits of validity of the active reptation theory
A theory to predict the influence of polar active in the reptation

properties of a polymer melt has been recently developed in the limit
of small activities [59,60]. This theory builds upon a basic tube theory
assumption, that the chain ends can explore all possible orientations
before creating new tube segments, so that the tube maintains the
fractal structure of a random walk. This assumption implies that the
maximum drift velocity of the primitive path along the tube 𝑐𝑚𝑎𝑥 needs
to be smaller than the ratio of the tube diameter 𝑎 and the entanglement
time 𝜏𝑒, as 𝑎∕𝜏𝑒. This means that the chain end can relax its orientation
(in a time of the order of 𝜏 ) before the primitive path moves by the
𝑒
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Fig. 5. Orientation correlations of bonds along the primitive path from head to tail,
𝐮0 ⋅𝐮𝑖⟩, for chains with molecular weight 𝑁 = 400 and different activities, as a function
f monomeric distance to the head along the primitive path, 𝑖. Inset: ⟨𝐮0 ⋅ 𝐮𝑖⟩ as a
unction of the contour length distance along the primitive path, 𝑙. Note that monomeric
nd contour length distances are not necessarily proportional for large activities.

activity-induced drift a distance of the order of the tube diameter 𝑎. An
estimation of 𝑐max considers the values obtained for the standard KG
model, 𝜏𝑒 ≈ 5800 and 𝑎 ≈ 9.1 [73], resulting into 𝑐max ≈ 1.57⋅10−3, which
s very small. In addition, constraint release is not considered by the
heory, so tubes are described as static objects, an assumption which is
xpected to breakdown when all chains are active, as explained already
n Fig. 1. If the tube is static, the correlation of the tube segment

orientation is expected to simply decay exponentially with distance.
To precisely quantify this effect, we here consider the unit vector

f the bonds along the primitive path, 𝑢𝑖, and calculate their mean
orrelation. In Fig. 5, ⟨𝐮0 ⋅𝐮𝑖⟩ is shown as a function of 𝑖, the monomeric

distance (as obtained from PPA) from the head along the primitive
path, for different activities. The inset included in Fig. 5 represents
he same magnitude as a function of the contour length position of the
onomer along the primitive path. Both quantities, monomer number

nd contour length position along the primitive path, are proportional
t equilibrium, because the density of monomers along the primitive

path is constant. This is not necessarily the case at high activities. In
the main panel, the passive case shows an exponential decay with 𝑖 ≈ 40
monomers. This number can be compared with the typical number of
monomers between entanglements, 𝑁𝑒, which for the Kremer–Grest
model is 𝑁𝑒 = 52, as determined by Likhtman from the plateau
modulus [73]. At very small activities, Pe𝑚 ≤ 0.01, the correlation
s almost identical to the equilibrium case, indicating that the ori-
ntational properties of the entanglement network are not perturbed
y the activity. However, at slightly larger activities Pe𝑚 ≥ 0.05, the
orrelation deviates from the equilibrium decay at monomeric distances
bove 𝑖 > 100, which is a sign that orientational correlation between
ube segments is appearing beyond the entanglement molecular weight.
his already indicates that the main assumption in the active reptation
heory at these still relatively small activities already fails. For a bit
arger activities (Pe𝑚 = 0.5), a stronger decay appears at very small
onomeric distances 𝑖 < 𝑁𝑒, which does not occur when plotting the

rientation correlation as a function of the contour length distance
long the primitive path (see inset in Fig. 5). This indicates how the

tube remains unperturbed next to the head, although the chain inside is
stretched as demonstrated by the PPA and the conformation (see Figs. 2
and 4). We have depicted the stretching of the chain inside the tube in
Fig. S1 (b) and further discussion is provided in section SIII of the SM.

lso, the correlation very clearly deviates from an exponential decay
t distances 𝑙 beyond the equilibrium tube diameter 𝑎.
6 
Although CR effects were not included in the active reptation the-
ry [59,60], some predictions remain valid for low activity levels.
owever, for activities above Pe𝑚 ≥ 0.05, we expect deviations, given

he elongation and orientational correlation observed in the tube seg-
ents. In molecular dynamics simulations of active chains moving
ithin a network of long passive polymers [61], where CR was inten-

ionally disabled, no tube deformation was observed up to Pe𝑚 = 0.05.
his suggests that CR, by softening the tubes, amplifies the impact of
ctivity on both the chain conformations and the overall entanglement
etwork.

3.1.5. Activity-induced bond alignment
When polymers are subjected to an external flow, chain segments

typically orient in the flow direction. In melts, this orientation occurs
when the flow rate exceeds the inverse of the disentanglement time
𝜏𝑑 , and before any signs of elongation appear, which arises only when
the flow rate exceeds the inverse of the Rouse time 𝜏𝑅 [74]. However,
in polar active polymer melts, no flow field is present, so there is
o preferred orientation, and the overall orientation distribution of
emains isotropic. On the other hand, elongated active particles in
uasi-two dimensional systems have shown to induce alignment due
o the presence of hydrodynamic interactions [75], or simply due to

the effect of excluded volume interactions that is already present for
collisions of two particles [2,76–78]. In three dimensions the same ef-
ect can be expected, although for much larger particle concentrations.
herefore, it is relevant to test whether polar activity in a polymer melt

nduces local alignment and if this is related with the chain stretching.
To quantify the polymer order parameter 𝑝2, we first compute, for

each monomer 𝑖, the unit vector pointing from the previous monomer
to the next along the chain contour, and then calculate the angle 𝜃𝑖𝑗
etween this vector and the unit vectors associated with all monomers
surrounding monomer 𝑖. Finally, we determine the second-order

egendre polynomial parameter 𝑝𝑖2 for each monomer (except for the
nds), defined as:

𝑝𝑖2 =

⟨

3 cos2 𝜃𝑖𝑗 − 1
2

⟩

𝑗

, (10)

where the average runs over all monomers 𝑗 within a cut-off distance
𝑟𝑐 of monomer 𝑖 (in this case, 𝑟𝑐 = 3.0𝜎). The order parameter 𝑝2 is
commonly used to detect nematic alignment with 𝑝2 = 1 indicating
perfect alignment and 𝑝2 = 0 a random distribution of orientations. In
our simulations, 𝑝𝑖2 is computed for each monomer and ⟨𝑝2⟩ is averaged
over monomers and steady state snapshots.

In Fig. 6(a), the mean value of the order parameter ⟨𝑝2⟩ is shown
s a function of Pe𝑚, for different molecular weights. In equilibrium,
𝑝2⟩ has a non-vanishing value related to some local alignment due
o excluded volume effects. Increasing the activity level to Pe𝑚 = 0.1
oes not result in any noticeable increase in ⟨𝑝2⟩. However, beyond
his threshold, activity clearly makes local bond alignment to increase,
ffect which is stronger for longer polymers. All curves exhibit a peak
lignment at Pe𝑚 ≈ 2, with the maximum value increasing with
olecular weight, followed by a decrease at higher Pe𝑚 values. The
ean values of ⟨𝑝2⟩ remain relatively low due to the inhomogeneous

ond alignment within the simulation box (see snapshots in Fig. 6(a)).
At low Pe𝑚, the simulation box appears mostly dark, indicating a lack
of nematic order. At higher activities, bright regions emerge, indicating
local clusters of aligned segments. The snapshot of a single molecule
nicely illustrates how 𝑝𝑖2 varies along the chain contour, and that
straight segments more frequently correspond to higher 𝑝2. As with
segmental stretching (see Fig. 3), nematic order is higher in segments
closer to the tail (see Fig. S4 in the Supplementary Material).

The clusters of aligned bonds are reminiscent of nematic tactoids
[79,80], and in order to characterize their average size 𝑚 we first define
a threshold value 𝑝𝑡ℎ2 = 0.25, above which a monomer is considered to
be ordered. We then identify clusters of ordered monomers based on
a distance criterion: ordered monomers within a maximum distance



J. Oller-Iscar et al. Polymer 320 (2025) 128074 
Fig. 6. (a) Average order parameter, ⟨𝑝2⟩ as a function of Pe𝑚 for various molecular weights. Snapshots for 𝑁 = 800 are included as insets, with atoms colored from black (low
𝑝2) to red, white and yellow (higher 𝑝2). Two snapshots refer to the bond distribution of the complete simulated melt for low and high indicated activity. A single chain contour
snapshot illustrates the different degrees of orientation along the for the high activity case. (b) Probability distribution of nematically ordered monomer clusters for different
activities in systems of 𝑁 = 200. (c) Mean cluster size as a function of Pe𝑚 for all molecular weights.
of 𝑑 = 2.0𝜎 are considered part of the same cluster. Fig. 6(b) and
(c) show the cluster size distribution 𝑝(𝑚) and mean value of the size
⟨𝑚⟩ of the clusters of aligned bonds, respectively. Below a threshold of
Pe𝑚 < 1, 𝑝(𝑚) decays exponentially, broadening as activity increases. At
higher activities, the distribution adopts a power-law shape 𝑝(𝑚) ∼ 𝑚𝜈

with 𝜈 ≃ −1.7, resembling scale-free networks. Similar cluster size
distributions have been observed in other active matter models, such
as the Vicsek model [81], self-propelled hard disks [82], self-propelled
rods [83], and active Brownian particles with polar alignment [27].
These distributions typically precede percolation and eventually also
the emergence of a giant cluster.

The alignment is larger for melts of increasing polymer length, as
shown in Fig. 6(a). This is related to the larger confinement provided
by the longer tubes which also produces an increase of the segment
cluster size in Fig. 6(a). Similarly to segmental stretching, see Fig. 3,
nematic order is higher in segments closer to the tail (see Fig. S4
in the Supplementary Material). The segments close to the head are
more aligned for shorter polymers, while the segments close to the tail
have similar alignment for long enough polymers, providing a mean
larger alignment with increasing polymer length, see Fig. 6(a). The
melt tube structure is easier to modify for shorter polymers, such that
head segments align easier to each other, but the structures are longer
lived for longer polymers, which makes the average cluster size, and
the average polymer alignment increase with polymer weight.

By closely inspecting the curves in Fig. 6(c), a maximum cluster size
is observed at Pe𝑚 = 2, followed by a slight decrease at Pe𝑚 = 4. This
peak in cluster size aligns with the maximum values of ⟨𝑝2⟩ (Fig. 6(a)),
suggesting that activity promotes bond alignment and cluster growth
up to a threshold Pe𝑚 = 2. Beyond this point, higher activity disrupts
further alignment and the formation of larger clusters. Interestingly,
polar activity still generates clusters of several thousand aligned bonds
(Fig. 6(b)), with longer chains forming larger clusters (Fig. 6(c)). How-
ever, these clusters exhibit highly dynamic behavior, continuously
dissolving and reforming at distant, seemingly uncorrelated regions of
the simulation box. This rapid fluctuation prevents the formation of
distinct ordered and disordered regions, and no phase separation is
observed in our simulations.

3.2. Dynamical properties

As in the case of dilute polymers with polar activity, the total
active force acting on each polymer center of mass is proportional
to its end-to-end vector. However, in a melt, chains are constrained
and must slither along their primitive paths rather than move freely in
7 
the direction of the force, as they do in dilute conditions. Despite this
constraint, activity is expected to significantly impact the dynamical
properties of the melt. To investigate this, we examine the center-
of-mass and segmental mean-square displacement, end-to-end vector
relaxation, and tangent–tangent correlation function. All these dynam-
ical observables have been calculated using an efficient multiple tau
correlator technique [84].

3.2.1. Center of mass MSD and diffusion coefficient
The mean square displacements (MSD) of the centers of mass of

chains with different molecular weights at various Pe𝑚 are presented in
Fig. 7(a). In the passive case, the expected long subdiffusive behavior
is observed, which at longer times transitions into a molecular weight-
dependent Fickian regime at the disengagement time 𝜏𝑑 [47], appearing
as a plateau with the chosen normalization. In the case of activity
governing the dynamics over reptation, two key phenomena emerge:
(i) the terminal Fickian regime, observed at times 𝑡 > 𝜏𝑐 , where 𝜏𝑐
is the disengagement time due to activity, is preceded by a superdif-
fusive regime, which can persist for over a decade in time at high
activities, and (ii) the diffusivity becomes independent of molecular
weight, depending solely on Pe𝑚. Both observations align with the
active reptation theory predictions [59], suggesting that CR does not
significantly influence the qualitative behavior of the MSD of the center
of mass.

Interestingly, when the activity dominates the dynamics, the dif-
fusion of the center of mass can be accurately described by the MSD
of an active Brownian particle (ABP) [38]. The fits to the simulation
results are shown as lines in Fig. 7(a) for Pe𝑚 > 0 (details provided in
the Supplementary Material). The fits do not reproduce the behavior at
very short times, since the equation for an ABP does not consider any
of the internal degrees of freedom that are characteristic of the motion
of polymer chains, but work very well from times 𝑡 almost two decades
smaller than 𝜏𝑐 . A similar near-quantitative agreement was found in
the MSD of dilute active polar polymers [26], which is attributed to
the total active force on the center of mass being proportional to
the end-to-end vector, whose orientation relaxes almost as a single
exponential.

From the Fickian regime in Fig. 7(a), the self-diffusion constant can
be extracted as 𝐷𝐺 = lim𝑡→∞ 𝛥𝐫2𝑐 𝑚(𝑡)∕6𝑡, as shown in Fig. 7(b), where
it can again be confirmed that 𝐷𝐺 becomes independent of molecular
weight when the activity dominates the dynamics and depends only
on Pe𝑚. In the passive case, 𝐷𝐺 follows a power-law dependence on
molecular weight, scaling roughly as 𝐷𝐺 ∝ 𝑁−1.8 for 𝑁 < 200 (with
deviations from the expected Rouse scaling of 𝐷 ∝ 𝑁−1 already
𝐺
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Fig. 7. (a) Molecular center of mass mean square displacement normalized by time for chains of various lengths and applied polar activities, showing superdiffusive motion at
short times and diffusive at long times. Lines correspond to the fit to the ABP behavior (see Supplementary Material). (b) Diffusion coefficient vs. molecular weight for each value
of the active force. (c) Diffusion coefficient, normalized by Pe𝑚 vs. Pe𝑚 for all molecular weights. Dashed line is a guide to eye showing the expected scaling from the active
reptation theory [59]. Note that for low activities, reptation dominates and diffusion does not change with activity, which in this representation shows as a divergence and appears
at smaller values of Pe𝑚 for larger 𝑁 .
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reported in unentangled melts [85]), and transitions to 𝐷𝐺 ∝ 𝑁−2.2

or 𝑁 > 200, which is characteristic of reptation with contour-length
luctuations [86]. Since 𝑁𝑒 ≈ 52 in the KG model [73], the transition

from Rouse to reptation regimes occurs around 𝑁 ≈ 3 to 4𝑁𝑒.
To gain a deeper understanding of the diffusion behavior, Fig. 7(c)

depicts 𝐷𝐺∕Pe𝑚, revealing three distinct regimes. At very low activities,
iffusive reptation dominates with a constant diffusion, which makes
𝐺∕Pe𝑚 diverge. This can be seen in Fig. 7(c) for shorter chains

(𝑁 = 50,100). The threshold Pe𝑡𝑚, above which active forces overtake
reptation, is expected to scale as Pe𝑡𝑚 ∝ 𝑁−2 [59], implying that longer
olymers will also show such divergence at even smaller values of

the activity. For intermediate values of the activity, below a threshold
Pe𝑚 ≈ 0.05, polar activity dominates over the diffusive reptation
motion, and the diffusion coefficient shows to be proportional to the
Péclet number, particularly for entangled polymers (𝑁 ≳ 3𝑁𝑒). In this
regime, the total active force applied along the chain contour in Eq. (5)
ncreases with molecular weight as 𝑓𝑎 ∝ 𝑁Pe𝑚. Simultaneously, the

friction coefficient for the chain slithering motion along the primitive
path increases as 𝜁𝑁 = 𝑁 𝜁0, where 𝜁0 is the monomeric friction coef-
icient, not necessarily equal to the friction coefficient in the Langevin
q. (4), since we are studying systems at high concentrations (see
ection 3.3). The drift velocity of the chain in its slithering motion

is therefore independent of 𝑁 , since 𝑐 ≈ 𝑓𝑎∕𝜁𝑁 ≈ Pe𝑚∕𝜁0. Since the
length the chain must travel to escape the tube grows linearly with 𝑁
i.e. 𝐿PP ∝ 𝑁), the time required for the chain to escape the tube due
o active slithering motion scales as 𝜏𝑐 = 𝐿PP∕𝑐 ∝ 𝑁∕𝑐. Assuming that
ctive chains approximately maintain Gaussian statistics, each time a
hain escapes its tube, it must have traveled a distance on the order
f the mean squared end-to-end distance, ⟨𝑅2

⟩ = 𝑁 𝑏2. Therefore, the
iffusion coefficient can be estimated as 𝐷𝐺 ≈ ⟨𝑅2

⟩∕𝜏𝑐 ≈ 𝑏𝑐 ∝ Pe𝑚,
hich agrees with simulation results shown in Fig. 7(c).

Finally, at larger values of the activity, 𝐷𝐺 grows faster than linearly
ith respect to Pe𝑚, reaching a peak at Pe𝑚 = 2, before decreasing

again. This enhanced diffusion correlates with the emergence of ne-
matic bond alignment, which also peaks at Pe𝑚 = 2, as shown in Fig. 6.
Alignment is likely to reduce the local friction coefficient for monomer
sliding, thereby enhancing the overall chain motion along the tube.
Interestingly, though alignment is more pronounced in longer chains,
he diffusivity increase is less pronounced. This may result from the

combination of reduced friction and increased tube stretching, which is
more significant for longer chains, as seen in Fig. 4(b). Consequently,
while friction decreases due to alignment, longer chains must still
 t

8 
reptate over greater distances under strong activity. As Pe𝑚 increases
further, alignment decreases, but tube stretching persists, leading to a
decline in the diffusion coefficient 𝐷𝐺.

3.2.2. Monomeric MSD
In Fig. 8(a), the time-normalized MSD for selected monomers of

chains with 𝑁 = 200 at various Pe𝑚 values are shown. In the passive
case, the MSD follows the classical power laws predicted by Doi and Ed-
wards for a Rouse chain reptating inside a random-walk-like tube [47],
with the middle monomer moving the slowest, while the head and tail,
having identical MSD, move the fastest. Given that the activity disrupts
he conformational symmetry between the head and tail of the chain,

it is interesting to explore whether this symmetry breaking also affects
their dynamics. It is worth noting that, according to the analytical
heory of active reptation [60] and previous simulations that include
onsider CLF [60,61], even though the activity induces a clear polarity

along the chain, the dynamical symmetry between head and tail in
terms of monomeric MSD is preserved. The same symmetry holds for
the melts of polar active chains studied here, up to a moderate Péclet
number, Pe𝑚 = 0.0125 (see Fig. 8(a).

However, for higher activities, a clear dynamical asymmetry
merges, with the head monomer moving more slowly than the tail.

This asymmetry becomes more pronounced with increasing Pe𝑚, and
for Pe𝑚 ≥ 1, the head monomer becomes the slowest along the entire
chain, even slower than the middle monomer. These dynamics are
reminiscent of those observed in active polar diluted chains [26], where
the asymmetry was attributed to the tail loosely following the head,
diffusing over a longer path, and exhibiting lateral fluctuations that
increase with activity.

In the current study, however, since the chains are in a dense,
ntangled melt, they are constrained to move along a tube. To accom-
odate the greater lateral fluctuations of the tail, properties of the tube

egments, such as step length and radius, must change between the
ime the head creates the tube segment and the moment the tail passes

through and destroys it. This effect may be driven by CR, potentially
inducing an activity-enhanced dynamic tube dilation effect [87] during
he lifetime of each tube segment.

Interestingly, at very high activities (Pe𝑚 > 0.5), all monomers
exhibit a superdiffusive regime in their MSD. This phenomenon is not
redicted by the analytical theory of active reptation, as the Pe𝑚 values
equired to observe superdiffusion fall outside the validity range of the
heory [60].
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Polymer 320 (2025) 128074 
Fig. 8. (a) Mean-square displacement divided by time (to highlight the terminal Fickian regime) of selected monomers — middle bead (solid lines), head (dashed lines), and
ail (dotted lines) — for chains of molecular weight 𝑁 = 200 and different values of Pe𝑚. Thin, black solid lines highlight the characteristic power laws predicted by the tube

theory [47]. (b) MSD of the central monomer normalized by 𝑡1∕2 (to highlight the Rouse scaling) for the same activities as in panel (a) and molecular weights 𝑁 = 200 (triangles)
nd 𝑁 = 400 (circles).
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In Fig. 8(b), the MSDs of the middle monomer for chains of dif-
erent molecular weights are compared. The MSD is divided by 𝑡0.5 to
ighlight two of the classical power-law regimes predicted by Doi and
dwards [47]. In the passive case, the motion of the middle monomer
f chains of 𝑁 = 200, 400 and 800 is nearly indistinguishable, up
ntil disengagement time, which depends on the molecular weight 𝑁 .
nterestingly, when the activity dominates the dynamics, the MSDs of

the middle monomer for all molecular weights nearly overlap across
the entire time range. As Pe𝑚 increases, the chain can escape the tube
t a time 𝜏𝑐 , which may be shorter than the disengagement time 𝜏𝑑 ,

the Rouse time of the chain 𝜏𝑅 (both of which depend on molecular
weight), or the Rouse time of an entanglement 𝜏𝑒 (which is independent
of molecular weight). Depending on the strength of the activity, this
may causes the loss of the corresponding power-law regimes predicted
by the tube theory. As long as the 𝑡0.25 power-law regime is observed
n the monomeric MSD, the tube is successfully imposing a lateral

constraint on the free three-dimensional motion of the chain. However,
at high activity levels (Pe𝑚 ≥ 0.05) this characteristic power-law
disappears, as the chain escapes the tube before 𝜏𝑒. In this case, the tube
no longer fully restricts the motion of the chain, and key assumptions of
the tube theory, such as the isotropic orientation of new tube segments
at the ends, no longer hold [59].

3.2.3. End-to-end relaxation
Relaxation of the end-to-end vector is one of the slowest dynamical

rocesses in linear polymers, and it can be experimentally measured
by means of dielectric spectroscopy [88,89] Here, the end-to-end
elaxation is measured through the auto-correlation function of the end-
o-end vector, 𝜙(𝑡) = ⟨𝐑(𝑡0)𝐑(𝑡0 + 𝑡)⟩, where the average is taken over

all chains and time origins 𝑡0, and results are shown in Fig. 9(a) for
hains with molecular weight of 𝑁 = 200 and various activities. The
assive case exhibits the slowest relaxation, following a nearly single-

exponential behavior dominated by the slowest mode, as predicted
by the tube theory [47]. As polar activity increases, the chain drift
long the tube accelerates, shortening the escape time, which explains
hat the end-to-end vector relaxes earlier the larger the activity. At
igher activity values, the relative contribution of diffusion to reptation

along the tube diminishes, causing a much sharper terminal region in
he relaxation, as nearly all chains fully relax their orientation at the

terminal time 𝜏𝑐 dictated by the drift.
To quantify the transition from diffusion-dominated to drift-

dominated motion along the primitive path, we fit the end-to-end
relaxation 𝜙(𝑡) to a stretched exponential,

−
(

𝑡
)𝛽
𝜙 = 𝑒 𝜏𝜙 (11)

9 
where the fitting parameters 𝛽 (stretching exponent) and 𝜏𝜙 (relax-
tion time) are shown for different molecular weights and activities
n Fig. 9(b) and (c), respectively. For the passive case, 𝜏𝜙 = 𝜏𝑑 , and
hen the activity dominates over reptation, 𝜏𝜙 = 𝜏𝑐 (a comparison

between the terminal times, as obtained from the center-of-mass MSD
nd the end-to-end relaxation, is shown in Fig. S3 of the Supplementary
aterial). For a single exponential relaxation process, 𝛽 should be equal

o 1. In the passive case, 𝛽 < 1 since although the end-to-end relaxation
is dominated by the first mode, higher odd modes also contribute [47].
As the activity increases, 𝛽 grows to a value greater than 1, indicating
a sharper relaxation process, as also shown in Fig. 9(a) (for a more
etailed discussion, see Section SIV of the Supplementary Material).
he relaxation time 𝜏𝜙 remains independent of activity for very small
e𝑚, when the diffusive reptation dominates over the minor drift caused

by the activity. When activity overtakes reptation, the terminal time
becomes inversely proportional to Pe𝑚, consistent with expected scaling
rguments [26,60]. Between Pe𝑚 = 0.1 and Pe𝑚 = 1, activity-induced
ond alignment (see Section 3.1.5) reduces the effective monomeric

friction coefficient, enhancing diffusion as shown in Fig. 7(c), and
slightly reducing the relaxation time of the end-to-end.

3.2.4. Tube tangent correlation function and tube survival
A central quantity in the development of tube theories is the tube

tangent correlation function 𝐺(𝑖, 𝑖′, 𝑡), which quantifies the correlation
between the orientations of different primitive path segments located
at positions 𝑖 and 𝑖′ along the tube, at different times. In Molecular Dy-
namics (MD) simulations, directly accessing the primitive path location
is challenging, as it requires Primitive Path Analysis, a computationally
intensive task if done frequently, and the tangent vectors of the atom-
istic chain exhibit significant fluctuations. To address this, we define a
oarse-grained version of the tangent–tangent correlation function as:

𝐺(𝑖, 𝑖′, 𝑡) = ⟨𝐭(𝑖, 𝑡) ⋅ 𝐭(𝑖′, 0)⟩, (12)

where the coarse-grained tangent vectors 𝐭(𝑖, 𝑡) are calculated by consid-
ering monomers spaced by 4 bonds (any number 𝑛 of bonds 1≪ 𝑛 ≪ 𝑁𝑒
s expected to work). This method helps mitigate the fast decorrelation
f the bond vectors due to CLF and lateral fluctuations within the tube:

𝐭(𝑖, 𝑡) = 𝐫𝑖+4(𝑡) − 𝐫𝑖(𝑡)
|𝐭̂(𝑖)|

, (13)

where 𝑖 = 0, 5, 10 …𝑁 , 𝐭̂(𝑖) is the coarse grained tangent vector at
equilibrium, and the average is taken over all the active chains in the
system and across all possible time origins.

The primitive path can be viewed as a random walk, meaning
that the tube-tangent correlation function at zero lag time corresponds
to the equilibrium conformation of the tube and is expected to be
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Fig. 9. (a) Normalized auto-correlation function of the end-to-end vector for chains of 𝑁 = 200 and different activities. The lines are fits to Eq. (11). (b) Stretching exponent 𝛽,
nd (c) characteristic relaxation time 𝜏𝜙, both as obtained from the fits in panel a), and calculated for different values of the activity and polymer length. Dashed lines are guides
o the eye and solid line in (c) depicts a power law of slope -1.
Fig. 10. Tangent–tangent correlation function for chains of 𝑁 = 400 in the limit of low activities, evaluated at different times, with 𝜏𝑑 as obtained from Fig. 9. The tail and head
f the chain are represented by positions 0 and 𝑁 , respectively. The passive case remains symmetric with respect to both diagonals at all times, decaying slowly by diffusion. For
mall activities the function remains symmetric only with respect to the diagonal 𝑖 = 𝑁 − 𝑖′ and shifts on time along that diagonal, indicating the drift of the tail segments towards
he head.
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nearly delta correlated, i.e. 𝐺(𝑖, 𝑖′, 𝑡) ≈ 𝛿(𝑖 − 𝑖′). Due to the slithering
motion along the tube, a segment 𝑖 at time 𝑡 may adopt an orientation
similar to that of another segment 𝑖′ at time 0. In pure reptation,
the initially delta-correlated tangent–tangent function decays slowly
by diffusion, while maintaining symmetry around the diagonals 𝑖 = 𝑖′

and 𝑖 = 𝑁 − 𝑖′. Understanding the tube tangent correlation function
enables the calculation of other critical observables, such as the stress
tensor, structure factor, or tube survival function [74]. In this work, we
examine the impact of polar activity on the shape and decay of the tube
tangent correlation function.

First, we focus on a range of small activities, Pe𝑚 ≲ 0.05, where
he theory of active reptation holds. In Fig. 10 the tangent–tangent

correlation function is shown for 𝑁 = 400 at three different activities
nd various lag-times. At very early times, the function is nearly zero
10 
everywhere except along the diagonal. In the passive case (top row
n Fig. 10), the function remains symmetric and decays slowly, with

maximum values consistently aligned with the diagonal, as predicted
by the tube theory. As 𝑡 approaches the terminal time 𝜏𝑑 , the function
ecays to zero. For small activities (bottom rows in Fig. 10), diffusion-
ike reptation motion dominates at early times, and the tangent–tangent
unction remains symmetric. However, as time progresses, the function
hifts diagonally towards the upper-left corner, and the maximum

values are no longer located along the diagonal, breaking the head–
tail symmetry. Polar activity induces a systematic drift along the tube,
where the orientation of tail segments (position 0 on both axes) at
time 𝑡 correlates with head segments (position 𝑁 on both axes) from
an earlier time. This occurs because the tail segments at time 𝑡 pass
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Fig. 11. Tangent–tangent correlation function for chains of 𝑁 = 400 in the limit of high activities, evaluated at different fractions of the disengagement time 𝜏𝑑 (see previous
Figure). Head–tail symmetry is broken, so the function is not symmetric with respect to any diagonal. The drift of the tail segments towards the head occurs at much shorter
times.
t
i

n
t

m
f

v
t
o
p
t

through tube segments previously occupied by the head at time 0. As
ctivity increases, this diagonal shift becomes more pronounced, and
he decay of the tangent–tangent function accelerates, indicating that
he chain is escaping the tube much faster than by reptation alone.

As discussed in previous sections, when the activity exceeds the
range of validity of the active reptation theory, additional effects such
as segmental and tube elongation, orientational correlation of tube
segments, or bond alignment emerge. This is reflected in the shape
of the tube-tangent function, as shown in Fig. 11. The tube confor-

ation is no longer at equilibrium, and the tube-tangent function is
ot delta-correlated at time 0. 𝐺(𝑖, 𝑖′, 0) exhibits a halo that intensifies

as the segment approaches the tail, indicating stronger correlation
between segments due to activity-induced tail alignment. Additionally,
the values along the diagonal exceed 1, signaling segment elongation
with respect to equilibrium. In contrast, head segments remain nearly
elta-correlated. As time progresses, the tangent–tangent function de-

cays rapidly as the chain relaxes and loses memory of its previous
orientation.

The tube segment survival function 𝜓(𝑖, 𝑡) is another key compo-
ent of the tube theory, representing the probability that a segment
along the tube has not yet been visited by either end of the chain
t time 𝑡. The function 𝜓(𝑖, 𝑡) is calculated by integrating the tube-
angent correlation function 𝐺(𝑖, 𝑖′, 𝑡) with respect to either index 𝑖 or
′, due to the symmetry of the function along the secondary diagonal.
n equilibrium, the tube theory predicts that 𝜓(𝑖, 𝑡) exhibits head–tail
ymmetry and decays slowly at both ends, since both the head and the

tail can destroy the tube through reptation. According to the theory
f active reptation [59,60], the activity-induced drift introduces an
symmetry in 𝜓(𝑖, 𝑡), with tube segments being renewed more quickly
y the tail than by the head, as well as a much faster decay of the
ube survival function. These predictions have been confirmed through
ingle-chain Brownian Dynamics simulations [60] and multichain MD

simulations of active chains in a mesh of passive long chains [61],
considering CLF. Here, we test whether the predictions hold when the
effect of CR is significant. As shown in Fig. 12, at low activity levels, the
MD simulation results align with theoretical predictions. As the activity
increases, the effects of reptation and CLF diminish, and the decay of
11 
𝜓(𝑖, 𝑡) is primarily driven by the polar drift motion of the chain along
he tube and towards the head. At low values of the activity this results
n a sharp decay of the tube survival function at the tail and, as shown

in Fig. 12, 𝜓(𝑖, 𝑡) shifts to the right as time proceeds. At high Pe𝑚, due
to the stretching of tail segments, 𝜓(𝑖, 𝑡) exceeds the value 1 at positions
ear the tail, and these maxima are dampened and shifted to towards
he head as chain drifts along the tube.

3.3. Effect of inertia

In polymer melts at equilibrium, inertia effects are generally negli-
gible, but the introduction of activity may alter this. To better under-
stand the influence of inertia, we conduct additional simulations using
Langevin dynamics as in Eq. (4), using a higher friction value to reduce
the eventual relevance of inertia.

We first estimate the effective equilibrium monomer friction 𝜁0,
which may differ from the input friction coefficient 𝜁 specified in
Eq. (4). While 𝜁 and 𝜁0 should be equivalent in dilute systems, collisions
between nearby monomers in dense systems can alter the effective
friction. Long simulations for 𝑁 = 200 chains are conducted, and
the diffusion coefficient 𝐷𝐺0 is measured via the center of mass MSD;
values are shown in Table 1. Although chains of this length have
only 3–4 entanglements, we estimate the monomeric friction coefficient
using the Rouse expression 𝐷𝐺0 = 𝑘𝐵𝑇 ∕𝑁 𝜁0. Acknowledging that
this approach may slightly overestimate friction due to the presence
of entanglements, the results in Table 1 suggest that the effective

onomer friction 𝜁0 increases roughly five times less than the input
riction 𝜁 , likely due to increased monomer collisions at lower 𝜁 values.

When polar activity dominates, according to theoretical predic-
tions [59], the diffusion coefficient should be proportional to the drift
elocity along the primitive path, 𝑐, which is inversely proportional
o the monomeric friction coefficient 𝜁0. Therefore, in the presence
f activity, the ratio of the diffusion coefficients should be inversely
roportional to the ratio of the monomeric frictions. Fig. 13(a) shows
he diffusion coefficient 𝐷𝐺, normalized by its equilibrium value 𝐷𝐺0

and the activity, plotted against Pe𝑚 scaled by 𝜁 . Both curves agree
at low activities, supporting the proportionality between 𝐷 and Pe
𝐺 𝑚
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Fig. 12. Tube segment survival function for chains with 𝑁 = 400 at different Pe𝑚 values, where 𝑖 represents the position of the tangent vector along the polymer. The times
specified at the right indicate the times at which each of the lines has been evaluated. The cyan dashed lines in the first panel show the prediction of the standard reptation
heory (Eq. 6.14 in the book of Doi and Edwards [47]) for the tube segment survival function.
Fig. 13. Effect of inertia for chains of 𝑁 = 200: (a) Diffusion coefficient, (b) bond alignment 𝑝2, (c) normalized end-to-end size, (d) center of mass mean square displacement,
(e) monomeric mean square displacement, and (f) end-to-end relaxation.
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Table 1
Diffusion coefficient at equilibrium for different values of the input friction parameter

used in Eq. (4), and the related effective monomeric friction coefficient 𝜁0, which
as been estimated from Rouse theory by 𝐷𝐺0 = 𝑘𝐵𝑇 ∕𝑁 𝜁0.
𝜁 𝐷𝐺0 𝜁0
0.5 5.5e−4 9.1
20 7.2e−5 69.4

[59]. At high activities, both curves exhibit a similar upturn, likely
ue to activity-induced bond alignment (see Section 3.1.5). Fig. 13(b)
ompares bond alignment for both frictions, showing a qualitatively
12 
similar increase in both cases, although alignment occurs at a higher
ctivities as 𝜁 increases.

The evaluation of coil size as a function of Pe𝑚 is shown in Fig. 13(c)
for the two investigated values of 𝜁 , revealing notable qualitative
differences. For higher friction, coil size decreases with Pe𝑚, consistent
with recent results obtained for the same system [41]. In contrast, for
lower friction, chains expand monotonically with activity, as discussed
n Section 3.1.1. Similar to the behavior observed in dilute chains [26],

coil size shows a clear upturn at activities beyond Pe𝑚∕𝜁 > 1, where
chain size trends change. In simulations with smaller friction, coil size
does not initially decrease, but instead increases at activities above
Pe ≈ 0.1
𝑚
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Fig. 14. Phase diagram of the dynamical behavior of active polar linear polymer melts: (a) Diagram showcasing the different dynamical and conformational regions; (b) Diagram
with simulation results with color field representing the diffusion coefficient, and the color of the markers based on the average nematic order of the system.
To evaluate the impact of friction on system dynamics, Fig. 13(d),
(e) and (f) show the mean-square displacements of the center-of-mass
and middle monomer, as well as the end-to-end vector relaxation,
respectively, all plotted against time normalized by 𝑏2∕𝐷𝐺0, the time
required for the chain to move a distance on the order of the bead
size at equilibrium. Dynamic properties are nearly independent of 𝜁 ,
showing that both systems exhibit similar behavior, with differences
emerging primarily from time shifts based on 𝜁 . Discrepancies appear
only at high Pe𝑚, where bond alignment becomes more pronounced at
lower friction, reducing the effective monomeric friction and thereby
enhancing relaxation and diffusion. The deformation of the bonds due
to activity, as shown in Fig. S5 of the Supplementary Material is also
notable: bonds deform significantly at Pe𝑚 = 1 for 𝜁 = 0.5 and Pe𝑚 = 10
for 𝜁 = 20. Thus, at high Pe𝑚, our results should be interpreted with
caution, as the uncrossability of the chains might be compromised.
More importantly, the elongation of the bonds directly impacts the
active force, increasing its magnitude due to the intrinsic definition
of the activity employed in this work. However, the extent of bond
stretching (10%) remains limited enough to preserve the validity of our
results at high Pe𝑚.

3.4. Phase diagram of dynamical behavior

The complex dynamical and conformational behavior of active polar
polymer chains in the melt can be summarized in the phase diagram
shown schematically in Fig. 14(a), and particularized for the Kremer–
Grest model in Fig. 14(b). The diagram is expressed as a function of
molecular weight 𝑁 and Péclet number Pe𝑚. In this diagram, eight
distinct regions can be identified, considering the relative effects of
molecular weight, entanglement, activity, anisotropy, chain and tube
stretching, and bond alignment. The transitions between adjacent re-
gions are not sharp and may occur over a broad crossover; however,
points well within each region should exhibit representative behavior
characteristic of that region. Using the scaling behaviors previously
discussed, the positions of each boundary line separating the regions
are determined as follows:

• The vertical line at 𝑁 ≈ 𝑁𝑒 delineates the boundary between
unentangled (region I) and entangled (region II) chains. This
transition is typically observed at 2–4 times 𝑁𝑒. This line is
continuous up to 𝑐 ≤ 𝑎∕𝜏𝑒, where 𝑐 is the drift velocity along the
primitive path imparted by the tangent polar activity (which is
proportional to Pe𝑚) [59]. Beyond this line, the assumptions of
the tube theory no longer apply, and at even higher activities,
it becomes uncertain whether surrounding chains continue to
constrain the probe chain.
13 
• The line separating reptation (II) from active reptation (IV) fol-
lows from theoretical predictions [59], which indicate a critical
activity that scales as 𝑐 > 𝑎∕3𝑍2𝜏𝑒, where 𝑍 is the number of
entanglements. Above this threshold, the activity-induced drift
dominates over the diffusive reptation motion. In our simulation
results, we identify the threshold when the activity-enhanced
diffusion coefficient is 1.5 greater than the equilibrium value due
to pure reptation and CLF (see Fig. 7). The resulting slope is −2.2,
rather than the predicted -2, likely due to the influence of CLF on
diffusion.

• The limit of validity of the active reptation theory separates
regions IV and V and is reached when 𝑐 ≈ 𝑎∕𝜏𝑒, a condition that
is independent of molecular weight. When the drift velocity sur-
passes 𝑎∕𝜏𝑒, new tube segments are created by the head without
permitting the exploration of all possible orientations. Beyond this
threshold, the isotropy of newly created tube segments can no
longer be assured, leading to correlated orientation among tube
segments (see Fig. 5).

• The line separating the Rouse regime(I) from the Active Rouse
regime (III) can be determined by comparing the time it takes
for the tail monomer to drift over the whole chain contour (𝜏𝑐 =
𝑁 𝑏∕𝑐) with the Rouse time for a chain of molecular weight 𝑁 ,
𝜏𝑅 = 𝑁2𝜏𝑒∕𝑁2

𝑒 . When 𝜏𝑐 < 𝜏𝑅, the activity dominates over Rouse
relaxation, which translates to 𝑐 > 𝑁2

𝑒 𝑏∕𝑁 𝜏𝑒. This line intersects
both the boundary between unentangled (I) and entangled (II)
polymers and the boundary separating pure reptation (II) from
active reptation (IV) at a single point. The slope of this line is
−1.8 rather than −1, attributed to the dependence of the diffusion
coefficient on molecular weight in simulations of unentangled
polymers (see Section 3.2.1).

• As discussed in Section 3.1.3, high activity levels may cause tube
stretching. The line separating active anisotropic reptation (V)
from the active stretched tube (VII) can be derived from Fig. 4
by establishing a threshold elongation of the tube at 10%. The
global Péclet number corresponding to this relative elongation of
the tube is Pe𝑔 ≈ 100. Consequently, this leads to the relationship
Pe𝑚 ∝ 100∕𝑁 ∝ 1∕𝑍.

• Similarly, there is a critical activity above which unentangled
chains also experience elongation (region IV). The limiting Péclet
number corresponding to this transition can be extracted from
Fig. 2 as Pe𝑚 ≈ 0.2. This transition line is likely dependent
on molecular weight and should intersect the line separating
unentangled (I) from entangled (III) chains, as well as the line that
separating anisotropic (V) from stretched (VII) tube at a single
point.
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• The line separating regions VI and VII from region VIII is inde-
pendent of molecular weight and can be extracted from Fig. 6. In
region VIII, the activity induces nematic bond alignment.

In Fig. 14(b), the diffusion coefficient (depicted as a background
color field) and the mean value of the nematic order parameter ⟨𝑝2⟩
(represented by the intensity of the colored symbols, ranging from
black to white) are presented to support the description in terms of
a phase diagram. For instance, the color bands are vertical in regions
I and II, indicating that the diffusion coefficient depends solely on
the molecular weight of the polymer. However, this bands become
horizontal in the rest of the phase diagram, reflecting the dependence of
diffusion on activity. The nematic order is nearly negligible below the
line Pe𝑚 = 1, and it becomes maximum at the top of the diagram. Other
quantities examined in this work, such as chain stretch and orientation
correlation, exhibit distinct behaviors across different regions of the
phase diagram.

4. Summary and conclusions

In this work, we investigated the effect of tangent polar activity on
he conformational and dynamical behavior of linear polymer melts

through Langevin dynamics, using the Kremer–Grest model. The fact
hat all chains in the system are active allows us to explore the effects
f constraint release (CR), which were not explored in our previous
ork [61]. The main findings of our study can be summarized as

ollows:

• The overall polymer conformation, as represented by the end-
to-end vector, is slightly stretched due to the activity, which
contrasts with the trend observed for the same active model
in dilute conditions [26]. Simulations using a higher friction
coefficient also show a more compact structure, in accordance to
recent results [41]. This difference can therefore be attributed to
inertia effects, which become significant at high activity levels.

• The change in conformation shows a universal behavior across
different molecular weights when plotted as a function of the
global Péclet number, up to a high threshold activity, where
deviations begin to occur.

• Similar to dilute chains, the deformation is not homogeneous
along the chain contour, with heads being more compact and tails
more elongated, though different molecular weights do not follow
a universal trend.

• The entanglement network remains unperturbed up to a threshold
Pe𝑚 = 0.0125, beyond which, orientational correlation between
entanglements appear, and the primitive path becomes elongated.

• Above Pe𝑚 = 0.1, activity-induced bond alignment is observed,
growing to a maximum at Pe𝑚 = 2 and decays at larger activity
levels. Large dynamic clusters of aligned bonds emerge within the
system, but rapid fluctuations prevent phase separation.

• The monomeric and center-of-mass diffusion can be well de-
scribed by the theory of active reptation up to a limiting activity
of Pe𝑚 = 0.0125, beyond which the assumptions of reptation no
longer apply.

• In the range of validity of the theory, the center of mass MSD
shows superdiffusive behavior, with the diffusion coefficient be-
coming independent of molecular weight and scaling linearly
with Pe𝑚. At higher activity, the diffusion coefficient grows more
rapidly due to bond alignment, which reduces friction. As in
dilute chains, the center of mass MSD can be described accurately
by the equation proposed for the MSD of ABPs.

• Polar activity breaks the dynamical symmetry between the head
and tail, with the head monomer becoming the slowest, while the
tail becomes the fastest monomer of the chain. At high activities,
the monomeric MSD also shows a superdiffusive regime.
14 
• As activity increases, the end-to-end relaxation occurs more
rapidly, and the decay becomes shaper, with the relaxation time
scaling as 𝑁∕Pe𝑚.

• The tube tangent correlation function and tube survival function
align with the predictions of the active reptation theory up to
Pe𝑚 = 0.0125. At higher activities, the stretching and orientation
correlation of the tube segments cause the simulation results to
diverge from the theoretical predictions.

• The overall complex dynamical and conformational behavior can
be summarized in a phase diagram as a function of Pe𝑚 and 𝑁 .

Our work contributes to the development of a robust theoretical
framework to investigate the dynamics of active polar polymers, which
will be invaluable for advancing both experimental research and the-
oretical models in the field. The findings of this study can serve as a
foundation for exploring active biomolecules and guiding the design of
new macromolecular materials with enriched and enhanced dynamical
roperties.
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