001     1039720
005     20250409202215.0
037 _ _ |a FZJ-2025-01768
041 _ _ |a English
100 1 _ |a Hammacher, Linus
|0 P:(DE-Juel1)203319
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 21st Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies
|g ModVal 2025
|c Karlsruhe
|d 2025-03-11 - 2025-03-12
|w Germany
245 _ _ |a Elucidating Parasitic Currents in Proton-Exchange Membrane Electrolytic Cells Via Physics-based and Data-driven Modeling
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1744210012_31451
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a Acknowledgment: Financial support was provided by the German Federal Ministry of Education and Research (BMBF) within the H2Giga project DERIEL (grant number 03HY122C).
520 _ _ |a Proton-exchange membrane (PEM) water electrolysis plays a crucial role in green hydrogen production. To accelerate commercial deployment, it is pertinent to use efficient computational models which capture the inherent non-linearities and aid to system optimization. This poster presentation focuses on understanding degradation mechanisms, particularly the impact of parasitic currents on the performance of a PEM electrolytic cell (PEMEC) through macro-scale modeling and uncertainty quantification (UQ) [1]. Parasitic currents due to electron conduction through the membrane are a frequently observed but not fully understood degradation effect, leading to lower Faradaic efficiency. One possible cause of these parasitic currents is mechanical damage in the membrane-electrode assembly (MEA) [2]. To specifically address the effect of such parasitic currents on Faradaic efficiency and cell performance under varying design parameters, we present a one-dimensional steady-state physics-based model for PEMECs. A comprehensive dataset from this model is generated and used to train a machine learning (ML) surrogate model. Its performance is analyzed to assess the potential of ML in accurately and efficiently predicting the effects of parasitic currents in PEMECs. The chosen ML algorithm, eXtreme Gradient Boosting (XGBoost), excels in predicting the polarization behavior while significantly reducing computational demands. Using this ML surrogate model, UQ and sensitivity analysis (SA) [3] are applied to investigate the dependence of PEMEC performance and Faradaic efficiency on the electronic conductivity of the PEM, especially when electronic pathways are existent within the membrane and operating at low current densities.References:[1] V. Karyofylli, K. A. Raman, L. Hammacher, Y. Danner, H. Kungl, A. Karl, E. Jodat, R.-A. Eichel, Accepted by Electrochemical Science Advances on 01/2025[2] S. P. S. Badwal, S. Giddey, F.T. Ciacchi, Ionics 12 (2006), 1, 7-14 [3] V. Karyofylli, Y. Danner, K. A. Raman, H. Kungl, A. Karl, E. Jodat, R.-A. Eichel, J. Power Sources 600 (2024), 234209
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
700 1 _ |a Karyofylli, Violeta
|0 P:(DE-Juel1)194150
|b 1
700 1 _ |a Kuppa, Raman Ashoke
|0 P:(DE-Juel1)198986
|b 2
700 1 _ |a Danner, Yannik
|0 P:(DE-Juel1)200271
|b 3
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 4
700 1 _ |a Karl, André
|0 P:(DE-Juel1)191359
|b 5
700 1 _ |a Jodat, Eva
|0 P:(DE-Juel1)161579
|b 6
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
|u fzj
909 C O |o oai:juser.fz-juelich.de:1039720
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)203319
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)203319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194150
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)198986
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)200271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)191359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161579
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21