001039722 001__ 1039722
001039722 005__ 20250604202305.0
001039722 0247_ $$2doi$$a10.1002/celc.202400632
001039722 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01770
001039722 0247_ $$2WOS$$aWOS:001419000500001
001039722 037__ $$aFZJ-2025-01770
001039722 041__ $$aEnglish
001039722 082__ $$a540
001039722 1001_ $$0P:(DE-HGF)0$$aIngber, Tjark Thorben Klaus$$b0
001039722 245__ $$aUnraveling Influential Factors of Stainless‐Steel Dissolution in High‐Energy Lithium Ion Batteries with LiFSI‐Based Electrolytes
001039722 260__ $$aWeinheim$$bWiley-VCH$$c2025
001039722 3367_ $$2DRIVER$$aarticle
001039722 3367_ $$2DataCite$$aOutput Types/Journal article
001039722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1742806317_20755
001039722 3367_ $$2BibTeX$$aARTICLE
001039722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001039722 3367_ $$00$$2EndNote$$aJournal Article
001039722 520__ $$aLeveraging physicochemical advantages over lithium hexafluorophosphate (LiPF6), lithium bis(fluorosulfonyl)imide (LiFSI) is being investigated as a conducting salt for lithium manganese-rich cathodes (LMR) and micro-crystalline silicon anodes (μ-Si). Nevertheless, its behavior towards the aluminum (Al) current collector and stainless-steel (SUS) coin cell parts limits its application under operating conditions requiring potentials higher than 3.9 V vs. Li|Li+. Using a mixture of organic carbonate-based solvents, various functional additives, and LiPF6 lithium salt concentrations up to 1.0 M, the instability issue of the Al current collector in the presence of LiFSI is avoided. However, stainless-steel dissolution remains, being confirmed by both potentiodynamic measurements and SEM morphology investigations of the coin cell components after linear sweep voltammetry measurements carried out to 5.0 V. The results also indicate that the amount of stainless-steel dissolution is influenced by both the LiFSI amount in the electrolyte and the quality (grade) of stainless-steel used. Using Al-coated SUS 316L coin cell parts and/or high concentration electrolytes (HCE) with LiFSI (≈ 4 M LiFSI), the observed stainless-steel dissolution process can be fully avoided, allowing the evaluation of the electrochemical performance of LMR cathodes with μ-Si anodes in LiFSI-based electrolytes.
001039722 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001039722 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001039722 7001_ $$0P:(DE-Juel1)195878$$aStan, Marian$$b1$$eCorresponding author$$ufzj
001039722 7001_ $$0P:(DE-Juel1)186842$$aYan, Peng$$b2$$ufzj
001039722 7001_ $$0P:(DE-Juel1)176955$$aOverhoff, Gerrit$$b3$$ufzj
001039722 7001_ $$0P:(DE-HGF)0$$aFehlings, Nick$$b4
001039722 7001_ $$0P:(DE-HGF)0$$aHyung-Tae, Kim$$b5
001039722 7001_ $$0P:(DE-Juel1)184366$$aHinz, Robert Tobias$$b6$$ufzj
001039722 7001_ $$0P:(DE-Juel1)191496$$aGuerdelli, Rayan$$b7$$ufzj
001039722 7001_ $$0P:(DE-Juel1)176954$$aWölke, Christian$$b8$$ufzj
001039722 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b9$$ufzj
001039722 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b10$$ufzj
001039722 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b11$$eCorresponding author$$ufzj
001039722 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.202400632$$gp. e202400632$$n6$$pe202400632$$tChemElectroChem$$v12$$x2196-0216$$y2025
001039722 8564_ $$uhttps://juser.fz-juelich.de/record/1039722/files/ChemElectroChem%20-%202025%20-%20Stan%20-%20Unraveling%20Influential%20Factors%20of%20Stainless%E2%80%90Steel%20Dissolution%20in%20High%E2%80%90Energy%20Lithium%20Ion.pdf$$yOpenAccess
001039722 8564_ $$uhttps://juser.fz-juelich.de/record/1039722/files/Manuscript%20celc.202400632_STAN_IMD-4.pdf$$yOpenAccess
001039722 8767_ $$8W-2025-00390-b$$92025-05-27$$a1200214555$$d2025-06-04$$eAPC$$jDEAL
001039722 909CO $$ooai:juser.fz-juelich.de:1039722$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001039722 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Universität Münster$$b0
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195878$$aForschungszentrum Jülich$$b1$$kFZJ
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186842$$aForschungszentrum Jülich$$b2$$kFZJ
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176955$$aForschungszentrum Jülich$$b3$$kFZJ
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184366$$aForschungszentrum Jülich$$b6$$kFZJ
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191496$$aForschungszentrum Jülich$$b7$$kFZJ
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176954$$aForschungszentrum Jülich$$b8$$kFZJ
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b9$$kFZJ
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b10$$kFZJ
001039722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b11$$kFZJ
001039722 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001039722 9141_ $$y2025
001039722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001039722 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001039722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2022$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-13$$wger
001039722 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-30T09:22:20Z
001039722 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-30T09:22:20Z
001039722 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001039722 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-30T09:22:20Z
001039722 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001039722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001039722 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001039722 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001039722 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001039722 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001039722 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001039722 920__ $$lyes
001039722 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001039722 9801_ $$aFullTexts
001039722 980__ $$ajournal
001039722 980__ $$aVDB
001039722 980__ $$aUNRESTRICTED
001039722 980__ $$aI:(DE-Juel1)IMD-4-20141217
001039722 980__ $$aAPC