001     1039722
005     20250604202305.0
024 7 _ |a 10.1002/celc.202400632
|2 doi
024 7 _ |a 10.34734/FZJ-2025-01770
|2 datacite_doi
024 7 _ |a WOS:001419000500001
|2 WOS
037 _ _ |a FZJ-2025-01770
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Ingber, Tjark Thorben Klaus
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Unraveling Influential Factors of Stainless‐Steel Dissolution in High‐Energy Lithium Ion Batteries with LiFSI‐Based Electrolytes
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742806317_20755
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Leveraging physicochemical advantages over lithium hexafluorophosphate (LiPF6), lithium bis(fluorosulfonyl)imide (LiFSI) is being investigated as a conducting salt for lithium manganese-rich cathodes (LMR) and micro-crystalline silicon anodes (μ-Si). Nevertheless, its behavior towards the aluminum (Al) current collector and stainless-steel (SUS) coin cell parts limits its application under operating conditions requiring potentials higher than 3.9 V vs. Li|Li+. Using a mixture of organic carbonate-based solvents, various functional additives, and LiPF6 lithium salt concentrations up to 1.0 M, the instability issue of the Al current collector in the presence of LiFSI is avoided. However, stainless-steel dissolution remains, being confirmed by both potentiodynamic measurements and SEM morphology investigations of the coin cell components after linear sweep voltammetry measurements carried out to 5.0 V. The results also indicate that the amount of stainless-steel dissolution is influenced by both the LiFSI amount in the electrolyte and the quality (grade) of stainless-steel used. Using Al-coated SUS 316L coin cell parts and/or high concentration electrolytes (HCE) with LiFSI (≈ 4 M LiFSI), the observed stainless-steel dissolution process can be fully avoided, allowing the evaluation of the electrochemical performance of LMR cathodes with μ-Si anodes in LiFSI-based electrolytes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stan, Marian
|0 P:(DE-Juel1)195878
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Yan, Peng
|0 P:(DE-Juel1)186842
|b 2
|u fzj
700 1 _ |a Overhoff, Gerrit
|0 P:(DE-Juel1)176955
|b 3
|u fzj
700 1 _ |a Fehlings, Nick
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hyung-Tae, Kim
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hinz, Robert Tobias
|0 P:(DE-Juel1)184366
|b 6
|u fzj
700 1 _ |a Guerdelli, Rayan
|0 P:(DE-Juel1)191496
|b 7
|u fzj
700 1 _ |a Wölke, Christian
|0 P:(DE-Juel1)176954
|b 8
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 9
|u fzj
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 10
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 11
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/celc.202400632
|g p. e202400632
|0 PERI:(DE-600)2724978-5
|n 6
|p e202400632
|t ChemElectroChem
|v 12
|y 2025
|x 2196-0216
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1039722/files/ChemElectroChem%20-%202025%20-%20Stan%20-%20Unraveling%20Influential%20Factors%20of%20Stainless%E2%80%90Steel%20Dissolution%20in%20High%E2%80%90Energy%20Lithium%20Ion.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1039722/files/Manuscript%20celc.202400632_STAN_IMD-4.pdf
909 C O |o oai:juser.fz-juelich.de:1039722
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Universität Münster
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)195878
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176955
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)184366
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)191496
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176954
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)172047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMELECTROCHEM : 2022
|d 2024-12-13
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-30T09:22:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-30T09:22:20Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-30T09:22:20Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21