001     1039728
005     20250414120454.0
024 7 _ |a 10.1016/j.apgeochem.2025.106301
|2 doi
024 7 _ |a 0883-2927
|2 ISSN
024 7 _ |a 1872-9134
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01772
|2 datacite_doi
024 7 _ |a WOS:001433862800001
|2 WOS
037 _ _ |a FZJ-2025-01772
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Lange, Steve
|0 P:(DE-Juel1)137066
|b 0
245 _ _ |a Uptake of iodine by cement hydration phases: Implications for radioactive waste disposal
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741763480_25634
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Iodine-129 (129I) is an important radionuclide in the context of nuclear waste disposal owing to its long half-life and potentially high mobility in the environment. The uptake of iodide and iodate by cement hydration phases, including calcium silicate hydrates (CSH), AFm and ettringite, as well as hardened cement paste made from Ordinary Portland cement, has been studied in batch-type sorption experiments to enhance understanding of iodine retention mechanisms in engineered repositories. Uptake kinetics were enerally fast, leading to steady state within 30 days. Strong uptake of iodine by AFm and ettringite was observed, the mechanism dependent on the iodine speciation. Iodide is retained in both AFm and ettringite by exchange for sulphate, whereas with iodate, iodate-substituted ettringite is formed by phase transformation or ion exchange in the case of AFm and ettringite, respectively. The contribution of CSH phases to iodine retention in cementitious systems depends on the Ca/Si-ratio of the CSH and the alkalinity of the solution, with stronger retention in young hyperalkaline cementitious materials. These findings have implications when selecting grouts for the immobilisation of radioactive waste streams containing 129I or for choosing cementitious grouts and/or backfill materials in nuclear waste repositories.
536 _ _ |a 1411 - Nuclear Waste Disposal (POF4-141)
|0 G:(DE-HGF)POF4-1411
|c POF4-141
|f POF IV
|x 0
536 _ _ |a Cebama - Cement-based materials, properties, evolution, barrier functions (662147)
|0 G:(EU-Grant)662147
|c 662147
|f NFRP-2014-2015
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Isaacs, Matthew
|0 P:(DE-Juel1)165228
|b 1
700 1 _ |a Klinkenberg, Martina
|0 P:(DE-Juel1)130364
|b 2
|e Corresponding author
700 1 _ |a Read, David
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bosbach, Dirk
|0 P:(DE-Juel1)130324
|b 4
700 1 _ |a Deissmann, Guido
|0 P:(DE-Juel1)156511
|b 5
773 _ _ |a 10.1016/j.apgeochem.2025.106301
|g Vol. 181, p. 106301 -
|0 PERI:(DE-600)1499242-5
|p 106301
|t Applied geochemistry
|v 181
|y 2025
|x 0883-2927
856 4 _ |u https://juser.fz-juelich.de/record/1039728/files/Lange_ApplGeochem_2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1039728
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130364
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130324
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156511
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-141
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Nukleare Entsorgung
|9 G:(DE-HGF)POF4-1411
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL GEOCHEM : 2022
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IFN-2-20101013
|k IFN-2
|l Nukleare Entsorgung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IFN-2-20101013
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21