001     1039732
005     20250310131237.0
024 7 _ |a 10.3390/ma18030680
|2 doi
024 7 _ |a 10.34734/FZJ-2025-01776
|2 datacite_doi
024 7 _ |a 39942346
|2 pmid
024 7 _ |a WOS:001420208300001
|2 WOS
037 _ _ |a FZJ-2025-01776
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Ahrens, Lara
|0 P:(DE-Juel1)190423
|b 0
|u fzj
245 _ _ |a Laser-Micro-Annealing of Microcrystalline Ni-Rich NCM Oxide: Towards Micro-Cathodes Integrated on Polyethylene Terephthalate Flexible Substrates
260 _ _ |a Basel
|c 2025
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741266984_2416
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This research was funded by the Joint Lab for Integrated Model and Data-Driven Material Characterization (MDMC) of the Helmholtz Association.
520 _ _ |a Here in this work, we report on micro-Raman spectroscopy investigations performed on freestanding Ni-rich NCM (LixNi0.83Co0.11Mn0.06O2) microcrystals transferred to flexible polyethylene terephthalate (PET) host substrates. This technological procedure introduces a first building block for future on-chip-integrated micro-accumulators for applications in flexible optoelectronics, sensors, microbiology, and human medicine. An after-synthesis thermal treatment was used to help improve the material homogeneity and perfection of the cathode material. To this end, a local laser micro-annealing process was applied to the freestanding Ni-rich NCM microcrystals. The thermally initialized structural processes in the singular micro-cathode units were characterized and determined by micro-Raman spectroscopy. Micro-Raman mapping images revealed the evolution of a recrystallization process after the local annealing procedure. Furthermore, laser micro-annealing led to the suppression of the pristine “polycrystalline morphology” of the investigated micro-cathode regions. Besides the dominant characteristic Raman mode at ~1085 cm−1, most likely ascribed to lithium carbonate, metal oxides with Raman modes around ~550 cm−1 were identified. This highly efficient transfer and integration technology represents a basic building block towards micrometer-sized accumulators for a large range of emerging applications.
536 _ _ |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|0 G:(DE-HGF)POF4-5353
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mikulics, Martin
|0 P:(DE-Juel1)128613
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Schröder, Steffen
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 3
|u fzj
700 1 _ |a Hardtdegen, Hilde Helen
|0 P:(DE-Juel1)125593
|b 4
|e Corresponding author
773 _ _ |a 10.3390/ma18030680
|g Vol. 18, no. 3, p. 680 -
|0 PERI:(DE-600)2487261-1
|n 3
|p 680 -
|t Materials
|v 18
|y 2025
|x 1996-1944
856 4 _ |u https://juser.fz-juelich.de/record/1039732/files/Laser-Micro-Annealing%20of%20Microcrystalline%20Ni-Rich%20NCM%20Oxide_%20Towards%20Micro-Cathodes%20Integrated%20on%20Polyethylene%20Terephthalate%20Flexible%20Substrates%20-%20materials-18-00680-v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1039732
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190423
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128613
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125593
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5353
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATERIALS : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-10-25T11:58:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-10-25T11:58:26Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21