001039733 001__ 1039733
001039733 005__ 20250310131244.0
001039733 0247_ $$2doi$$a10.1038/s42255-024-01196-4
001039733 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01777
001039733 0247_ $$2pmid$$a39815080
001039733 0247_ $$2WOS$$aWOS:001396167500001
001039733 037__ $$aFZJ-2025-01777
001039733 082__ $$a610
001039733 1001_ $$00000-0001-5795-3505$$aTutas, Janine$$b0
001039733 245__ $$aAutophagy regulator ATG5 preserves cerebellar function by safeguarding its glycolytic activity
001039733 260__ $$a[London]$$bSpringer Nature$$c2025
001039733 3367_ $$2DRIVER$$aarticle
001039733 3367_ $$2DataCite$$aOutput Types/Journal article
001039733 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740058999_16597
001039733 3367_ $$2BibTeX$$aARTICLE
001039733 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001039733 3367_ $$00$$2EndNote$$aJournal Article
001039733 520__ $$aDysfunctions in autophagy, a cellular mechanism for breaking downcomponents within lysosomes, often lead to neurodegeneration. Thespecific mechanisms underlying neuronal vulnerability due to autophagydysfunction remain elusive. Here we show that autophagy contributesto cerebellar Purkinje cell (PC) survival by safeguarding their glycolyticactivity. Outside the conventional housekeeping role, autophagy is alsoinvolved in the ATG5-mediated regulation of glucose transporter 2 (GLUT2)levels during cerebellar maturation. Autophagy-deficient PCs exhibitGLUT2 accumulation on the plasma membrane, along with increasedglucose uptake and alterations in glycolysis. We i de nt ify l ys op hosp ha-tidic acid and serine as glycolytic intermediates that trigger PC death anddemonstrate that the deletion of GLUT2 in ATG5-deficient mice mitigates PCne urod egen e ration and rescues their ataxic gait. Taken together, this workreveals a mechanism for regulating GLUT2 levels in neurons and providesinsights into the neuroprotective role of autophagy by controlling glucosehomeostasis in the brain.
001039733 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001039733 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001039733 7001_ $$00000-0002-0893-2967$$aTolve, Marianna$$b1
001039733 7001_ $$0P:(DE-HGF)0$$aÖzer-Yildiz, Ebru$$b2
001039733 7001_ $$00000-0003-2729-0928$$aIckert, Lotte$$b3
001039733 7001_ $$0P:(DE-HGF)0$$aKlein, Ines$$b4
001039733 7001_ $$00000-0003-3660-3199$$aSilverman, Quinn$$b5
001039733 7001_ $$00000-0002-0955-8065$$aLiebsch, Filip$$b6
001039733 7001_ $$00009-0002-1114-2621$$aDethloff, Frederik$$b7
001039733 7001_ $$00000-0002-4636-1827$$aGiavalisco, Patrick$$b8
001039733 7001_ $$0P:(DE-Juel1)180330$$aEndepols, Heike$$b9
001039733 7001_ $$0P:(DE-HGF)0$$aGeorgomanolis, Theodoros$$b10
001039733 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b11
001039733 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b12
001039733 7001_ $$00000-0002-2118-9338$$aSchwarz, Guenter$$b13
001039733 7001_ $$00000-0002-3738-0129$$aThorens, Bernard$$b14
001039733 7001_ $$00000-0002-4244-8925$$aGatto, Graziana$$b15
001039733 7001_ $$00000-0002-3293-7397$$aFrezza, Christian$$b16
001039733 7001_ $$00000-0002-3425-6659$$aKononenko, Natalia L.$$b17$$eCorresponding author
001039733 773__ $$0PERI:(DE-600)2933873-6$$a10.1038/s42255-024-01196-4$$p297–320$$tNature metabolism$$v7$$x2522-5812$$y2025
001039733 8564_ $$uhttps://juser.fz-juelich.de/record/1039733/files/s42255-024-01196-4-1.pdf$$yOpenAccess
001039733 909CO $$ooai:juser.fz-juelich.de:1039733$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001039733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b9$$kFZJ
001039733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b11$$kFZJ
001039733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b12$$kFZJ
001039733 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001039733 9141_ $$y2025
001039733 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-16
001039733 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001039733 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT METAB : 2022$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT METAB : 2022$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2024-12-16$$wger
001039733 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001039733 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001039733 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001039733 920__ $$lyes
001039733 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001039733 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
001039733 980__ $$ajournal
001039733 980__ $$aVDB
001039733 980__ $$aUNRESTRICTED
001039733 980__ $$aI:(DE-Juel1)INM-5-20090406
001039733 980__ $$aI:(DE-Juel1)INM-2-20090406
001039733 9801_ $$aFullTexts