001039743 001__ 1039743
001039743 005__ 20250220092010.0
001039743 0247_ $$2arXiv$$aarXiv:2412.15817
001039743 037__ $$aFZJ-2025-01782
001039743 088__ $$2arXiv$$aarXiv:2412.15817
001039743 1001_ $$0P:(DE-HGF)0$$aKämpfer, David$$b0$$eFirst author
001039743 245__ $$aImaging the transition from diffusive to Landauer resistivity dipoles
001039743 260__ $$c2024
001039743 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1739863370_1838
001039743 3367_ $$2ORCID$$aWORKING_PAPER
001039743 3367_ $$028$$2EndNote$$aElectronic Article
001039743 3367_ $$2DRIVER$$apreprint
001039743 3367_ $$2BibTeX$$aARTICLE
001039743 3367_ $$2DataCite$$aOutput Types/Working Paper
001039743 520__ $$aA point-like defect in a uniform current-carrying conductor induces a dipole in the electrochemical potential, which counteracts the original transport field. If the mean free path of the carriers is much smaller than the size of the defect, the dipole results from the purely diffusive motion of the carriers around the defect. In the opposite limit, ballistic carriers scatter from the defect $-$ for this situation Rolf Landauer postulated the emergence of a residual resistivity dipole (RRD) that is independent of the defect size and thus imposes a fundamental limit on the resistance of the parent conductor in the presence of defects. Here, we study resistivity dipoles around holes of different sizes in two-dimensional Bi films on Si(111). Using scanning tunneling potentiometry to image the dipoles in real space, we find a transition from linear to constant scaling behavior for small hole sizes, manifesting the transition from diffusive to Landauer dipoles. The extracted parameters of the transition allow us to estimate the Fermi wave vector and the carrier mean free path in our Bi films.
001039743 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001039743 588__ $$aDataset connected to DataCite
001039743 7001_ $$0P:(DE-Juel1)195702$$aKovalchuk, Serhii$$b1$$ufzj
001039743 7001_ $$0P:(DE-Juel1)192445$$aHofmann, Jonathan K.$$b2$$ufzj
001039743 7001_ $$0P:(DE-Juel1)179477$$aBalashov, Timofey$$b3$$ufzj
001039743 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b4$$ufzj
001039743 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b5$$ufzj
001039743 7001_ $$0P:(DE-HGF)0$$aMorawski, Ireneusz$$b6
001039743 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b7$$ufzj
001039743 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b8$$eCorresponding author$$ufzj
001039743 8564_ $$uhttps://arxiv.org/pdf/2412.15817
001039743 909CO $$ooai:juser.fz-juelich.de:1039743$$pVDB
001039743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001039743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195702$$aForschungszentrum Jülich$$b1$$kFZJ
001039743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192445$$aForschungszentrum Jülich$$b2$$kFZJ
001039743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179477$$aForschungszentrum Jülich$$b3$$kFZJ
001039743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b4$$kFZJ
001039743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b5$$kFZJ
001039743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b7$$kFZJ
001039743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b8$$kFZJ
001039743 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001039743 9141_ $$y2024
001039743 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001039743 980__ $$apreprint
001039743 980__ $$aVDB
001039743 980__ $$aI:(DE-Juel1)PGI-3-20110106
001039743 980__ $$aUNRESTRICTED