001     1039743
005     20250220092010.0
024 7 _ |a arXiv:2412.15817
|2 arXiv
037 _ _ |a FZJ-2025-01782
088 _ _ |a arXiv:2412.15817
|2 arXiv
100 1 _ |a Kämpfer, David
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Imaging the transition from diffusive to Landauer resistivity dipoles
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1739863370_1838
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a A point-like defect in a uniform current-carrying conductor induces a dipole in the electrochemical potential, which counteracts the original transport field. If the mean free path of the carriers is much smaller than the size of the defect, the dipole results from the purely diffusive motion of the carriers around the defect. In the opposite limit, ballistic carriers scatter from the defect $-$ for this situation Rolf Landauer postulated the emergence of a residual resistivity dipole (RRD) that is independent of the defect size and thus imposes a fundamental limit on the resistance of the parent conductor in the presence of defects. Here, we study resistivity dipoles around holes of different sizes in two-dimensional Bi films on Si(111). Using scanning tunneling potentiometry to image the dipoles in real space, we find a transition from linear to constant scaling behavior for small hole sizes, manifesting the transition from diffusive to Landauer dipoles. The extracted parameters of the transition allow us to estimate the Fermi wave vector and the carrier mean free path in our Bi films.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Kovalchuk, Serhii
|0 P:(DE-Juel1)195702
|b 1
|u fzj
700 1 _ |a Hofmann, Jonathan K.
|0 P:(DE-Juel1)192445
|b 2
|u fzj
700 1 _ |a Balashov, Timofey
|0 P:(DE-Juel1)179477
|b 3
|u fzj
700 1 _ |a Cherepanov, Vasily
|0 P:(DE-Juel1)128762
|b 4
|u fzj
700 1 _ |a Voigtländer, Bert
|0 P:(DE-Juel1)128794
|b 5
|u fzj
700 1 _ |a Morawski, Ireneusz
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 7
|u fzj
700 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 8
|e Corresponding author
|u fzj
856 4 _ |u https://arxiv.org/pdf/2412.15817
909 C O |o oai:juser.fz-juelich.de:1039743
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)195702
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)192445
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128762
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162163
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21