001039744 001__ 1039744
001039744 005__ 20250423082632.0
001039744 0247_ $$2arXiv$$aarXiv:2410.19652
001039744 037__ $$aFZJ-2025-01783
001039744 088__ $$2arXiv$$aarXiv:2410.19652
001039744 1001_ $$0P:(DE-Juel1)187220$$aBoban, Honey$$b0$$ufzj
001039744 245__ $$aScattering makes a difference in circular dichroic angle-resolved photoemission
001039744 260__ $$c2024
001039744 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1739863326_31425
001039744 3367_ $$2ORCID$$aWORKING_PAPER
001039744 3367_ $$028$$2EndNote$$aElectronic Article
001039744 3367_ $$2DRIVER$$apreprint
001039744 3367_ $$2BibTeX$$aARTICLE
001039744 3367_ $$2DataCite$$aOutput Types/Working Paper
001039744 500__ $$a12 pages, 7 figures
001039744 520__ $$aRecent years have witnessed a steady progress towards blending 2D quantum materials into technology, with future applications often rooted in the electronic structure. Since crossings and inversions of electronic bands with different orbital characters determine intrinsic quantum transport properties, knowledge of the orbital character is essential. Here, we benchmark angle-resolved photoelectron emission spectroscopy (ARPES) as a tool to experimentally derive orbital characters. For this purpose we study the valence electronic structure of two technologically relevant quantum materials, graphene and WSe$_2$, and focus on circular dichroism that is believed to provide sensitivity to the orbital angular momentum. We analyze the contributions related to angular atomic photoionization profiles, interatomic interference, and multiple scattering. Regimes in which initial-state properties could be disentangled from the ARPES maps are critically discussed and the potential of using circular-dichroic ARPES as a tool to investigate the spin polarization of initial bands is explored. For the purpose of generalization, results from two additional materials, GdMn$_6$Sn$_6$ and PtTe$_2$ are presented in addition. This research demonstrates rich complexity of the underlying physics of circular-dichroic ARPES, providing new insights that will shape the interpretation of both past and future circular-dichroic ARPES studies.
001039744 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001039744 588__ $$aDataset connected to arXivarXiv
001039744 7001_ $$0P:(DE-Juel1)186645$$aQahosh, Mohammed$$b1$$ufzj
001039744 7001_ $$0P:(DE-Juel1)165589$$aHou, Xiao$$b2$$ufzj
001039744 7001_ $$0P:(DE-HGF)0$$aSobol, Tomasz$$b3
001039744 7001_ $$0P:(DE-HGF)0$$aBeyer, Edyta$$b4
001039744 7001_ $$0P:(DE-HGF)0$$aSzczepanik, Magdalena$$b5
001039744 7001_ $$0P:(DE-Juel1)187112$$aBaranowski, Daniel$$b6$$ufzj
001039744 7001_ $$0P:(DE-Juel1)175513$$aMearini, Simone$$b7$$ufzj
001039744 7001_ $$0P:(DE-Juel1)145012$$aFeyer, Vitaliy$$b8$$ufzj
001039744 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b9$$ufzj
001039744 7001_ $$0P:(DE-Juel1)188290$$aJin, Keda$$b10$$ufzj
001039744 7001_ $$0P:(DE-Juel1)187583$$aWichmann, Tobias$$b11$$ufzj
001039744 7001_ $$0P:(DE-HGF)0$$aMartinez-Castro, Jose$$b12
001039744 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b13$$ufzj
001039744 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b14$$ufzj
001039744 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b15$$ufzj
001039744 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b16$$ufzj
001039744 7001_ $$0P:(DE-HGF)0$$aHenk, Jürgen$$b17
001039744 7001_ $$0P:(DE-Juel1)130895$$aPlucinski, Lukasz$$b18$$eCorresponding author$$ufzj
001039744 773__ $$a10.48550/arXiv.2410.19652
001039744 8564_ $$uhttps://arxiv.org/abs/2410.19652
001039744 909CO $$ooai:juser.fz-juelich.de:1039744$$pVDB
001039744 9141_ $$y2024
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187220$$aForschungszentrum Jülich$$b0$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186645$$aForschungszentrum Jülich$$b1$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165589$$aForschungszentrum Jülich$$b2$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187112$$aForschungszentrum Jülich$$b6$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175513$$aForschungszentrum Jülich$$b7$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich$$b8$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b9$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188290$$aForschungszentrum Jülich$$b10$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187583$$aForschungszentrum Jülich$$b11$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b12$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b13$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b14$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b15$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b16$$kFZJ
001039744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130895$$aForschungszentrum Jülich$$b18$$kFZJ
001039744 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001039744 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001039744 980__ $$apreprint
001039744 980__ $$aVDB
001039744 980__ $$aI:(DE-Juel1)PGI-3-20110106
001039744 980__ $$aUNRESTRICTED