001039745 001__ 1039745
001039745 005__ 20250220092010.0
001039745 037__ $$aFZJ-2025-01784
001039745 1001_ $$0P:(DE-HGF)0$$aBolat, Rustem$$b0$$eFirst author
001039745 245__ $$aThe electrostatic potential of atomic nanostructures on a metal surface
001039745 260__ $$c2023
001039745 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1739863342_1838
001039745 3367_ $$2ORCID$$aWORKING_PAPER
001039745 3367_ $$028$$2EndNote$$aElectronic Article
001039745 3367_ $$2DRIVER$$apreprint
001039745 3367_ $$2BibTeX$$aARTICLE
001039745 3367_ $$2DataCite$$aOutput Types/Working Paper
001039745 520__ $$aThe discrete and charge-separated nature of matter - electrons and nuclei - results in local electrostatic fields that are ubiquitous in nanoscale structures and are determined by their shape, material, and environment. Such fields are relevant in catalysis, nanoelectronics and quantum nanoscience, and their control will become even more important as the devices in question reach few-nanometres dimensions. Surface-averaging techniques provide only limited experimental access to these potentials at and around individual nanostructures. Here, we use scanning quantum dot microscopy to investigate how electric potentials evolve as nanostructures are built up atom by atom. We image the potential over adatoms, chains, and clusters of Ag and Au atoms on Ag(111) and quantify their surface dipole moments. By focusing on the total charge density, these data establish a new benchmark for ab initio calculations. Indeed, our density functional theory calculations not only show an impressive agreement with experiment, but also allow a deeper analysis of the mechanisms behind the dipole formation, their dependence on fundamental atomic properties and on the atomic configuration of the nanostructures. This allows us to formulate an intuitive picture of the basic mechanisms behind dipole formation, which enables better design choices for future nanoscale systems such as single atom catalysts.
001039745 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001039745 588__ $$aDataset connected to DataCite
001039745 7001_ $$0P:(DE-Juel1)187493$$aGuevara Parra, Jose Maria$$b1
001039745 7001_ $$0P:(DE-Juel1)164154$$aLeinen, Philipp$$b2
001039745 7001_ $$0P:(DE-Juel1)176201$$aKnol, Marvin$$b3
001039745 7001_ $$0P:(DE-Juel1)176199$$aArefi, Hadi$$b4$$ufzj
001039745 7001_ $$0P:(DE-Juel1)176675$$aMaiworm, Michael$$b5
001039745 7001_ $$0P:(DE-HGF)0$$aFindeisen, R.$$b6
001039745 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b7$$ufzj
001039745 7001_ $$0P:(DE-HGF)0$$aHofmann, O. T.$$b8
001039745 7001_ $$0P:(DE-HGF)0$$aMaurer, R. J.$$b9
001039745 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b10$$ufzj
001039745 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b11$$eCorresponding author$$ufzj
001039745 8564_ $$uhttps://www.arxiv.org/abs/2312.13579v1
001039745 909CO $$ooai:juser.fz-juelich.de:1039745$$pVDB
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187493$$aForschungszentrum Jülich$$b1$$kFZJ
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164154$$aForschungszentrum Jülich$$b2$$kFZJ
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176201$$aForschungszentrum Jülich$$b3$$kFZJ
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176199$$aForschungszentrum Jülich$$b4$$kFZJ
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176675$$aForschungszentrum Jülich$$b5$$kFZJ
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b7$$kFZJ
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b10$$kFZJ
001039745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b11$$kFZJ
001039745 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001039745 9141_ $$y2024
001039745 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001039745 980__ $$apreprint
001039745 980__ $$aVDB
001039745 980__ $$aI:(DE-Juel1)PGI-3-20110106
001039745 980__ $$aUNRESTRICTED