001039746 001__ 1039746
001039746 005__ 20250220092010.0
001039746 037__ $$aFZJ-2025-01785
001039746 1001_ $$0P:(DE-HGF)0$$aAdamkiewicz, Alexa$$b0
001039746 245__ $$aCoherent and incoherent excitation pathways in time-resolved photoemission orbital tomography of CuPc/Cu(001)-2O
001039746 260__ $$c2023
001039746 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1739866080_31425
001039746 3367_ $$2ORCID$$aWORKING_PAPER
001039746 3367_ $$028$$2EndNote$$aElectronic Article
001039746 3367_ $$2DRIVER$$apreprint
001039746 3367_ $$2BibTeX$$aARTICLE
001039746 3367_ $$2DataCite$$aOutput Types/Working Paper
001039746 520__ $$aTime-resolved photoemission orbital tomography (tr-POT) offers unique possibilities for tracing molecular electron dynamics. The recorded pump-induced changes of the angle-resolved photoemission intensities allow to characterize unoccupied molecular states in momentum space and to deduce the incoherent temporal evolution of their population. Here, we show for the example of CuPc/Cu(001)-2O that the method also gives access to the coherent regime and that different excitation pathways can be disentangled by a careful analysis of the time-dependent change of the photoemission momentum pattern. In particular, we demonstrate by varying photon energy and polarization of the pump light, how the incoherent temporal evolution of the LUMO distribution can be distinguished from coherent contributions of the projected HOMO. Moreover, we report the selective excitation of molecules with a specific orientation at normal incidence by aligning the electric field of the pump light along the molecular axis.
001039746 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001039746 588__ $$aDataset connected to DataCite
001039746 7001_ $$0P:(DE-Juel1)172607$$aRaths, Miriam$$b1
001039746 7001_ $$0P:(DE-Juel1)190627$$aStettner, Monja$$b2$$ufzj
001039746 7001_ $$0P:(DE-HGF)0$$aTheilen, Marcel$$b3
001039746 7001_ $$0P:(DE-HGF)0$$aMünster, Lasse$$b4
001039746 7001_ $$0P:(DE-Juel1)190628$$aWenzel, Sabine$$b5$$ufzj
001039746 7001_ $$0P:(DE-Juel1)180912$$aHutter, Mark$$b6$$ufzj
001039746 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b7
001039746 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b8$$ufzj
001039746 7001_ $$0P:(DE-HGF)0$$aBocquet, Francois C.$$b9
001039746 7001_ $$0P:(DE-HGF)0$$aWallauer, Robert$$b10
001039746 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b11$$eCorresponding author$$ufzj
001039746 7001_ $$0P:(DE-HGF)0$$aHöfer, Ulrich$$b12$$eCorresponding author
001039746 8564_ $$uhttps://arxiv.org/abs/2311.13212
001039746 909CO $$ooai:juser.fz-juelich.de:1039746$$pVDB
001039746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172607$$aForschungszentrum Jülich$$b1$$kFZJ
001039746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190627$$aForschungszentrum Jülich$$b2$$kFZJ
001039746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190628$$aForschungszentrum Jülich$$b5$$kFZJ
001039746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180912$$aForschungszentrum Jülich$$b6$$kFZJ
001039746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
001039746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b8$$kFZJ
001039746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b9$$kFZJ
001039746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b11$$kFZJ
001039746 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001039746 9141_ $$y2024
001039746 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001039746 980__ $$apreprint
001039746 980__ $$aVDB
001039746 980__ $$aI:(DE-Juel1)PGI-3-20110106
001039746 980__ $$aUNRESTRICTED