001039747 001__ 1039747
001039747 005__ 20250220092010.0
001039747 0247_ $$2arXiv$$aarXiv:2304.08142
001039747 037__ $$aFZJ-2025-01786
001039747 088__ $$2arXiv$$aarXiv:2304.08142
001039747 1001_ $$0P:(DE-HGF)0$$aMartinez-Castro, Jose$$b0$$eCorresponding author
001039747 245__ $$aOne-dimensional topological superconductivity in a van der Waals heterostructure
001039747 260__ $$c2023
001039747 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1739863356_1701
001039747 3367_ $$2ORCID$$aWORKING_PAPER
001039747 3367_ $$028$$2EndNote$$aElectronic Article
001039747 3367_ $$2DRIVER$$apreprint
001039747 3367_ $$2BibTeX$$aARTICLE
001039747 3367_ $$2DataCite$$aOutput Types/Working Paper
001039747 500__ $$a13 pages, 4 figures
001039747 520__ $$aOne-dimensional (1D) topological superconductivity is a state of matter that is not found in nature. However, it can be realised, for example, by inducing superconductivity into the quantum spin Hall edge state of a two-dimensional topological insulator. Because topological superconductors are proposed to host Majorana zero modes, they have been suggested as a platform for topological quantum computing. Yet, conclusive proof of 1D topological superconductivity has remained elusive. Here, we employ low-temperature scanning tunnelling microscopy to show 1D topological superconductivity in a van der Waals heterostructure by directly probing its superconducting properties, instead of relying on the observation of Majorana zero modes at its boundary. We realise this by placing the two-dimensional topological insulator monolayer WTe$_2$ on the superconductor NbSe$_2$. We find that the superconducting topological edge state is robust against magnetic fields, a hallmark of its triplet pairing. Its topological protection is underpinned by a lateral self-proximity effect, which is resilient against disorder in the monolayer edge. By creating this exotic state in a van der Waals heterostructure, we provide an adaptable platform for the future realization of Majorana bound states. Finally, our results more generally demonstrate the power of Abrikosov vortices as effective experimental probes for superconductivity in nanostructures.
001039747 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001039747 588__ $$aDataset connected to arXivarXiv
001039747 7001_ $$0P:(DE-Juel1)187583$$aWichmann, Tobias$$b1$$eFirst author$$ufzj
001039747 7001_ $$0P:(DE-Juel1)188290$$aJin, Keda$$b2$$ufzj
001039747 7001_ $$0P:(DE-HGF)0$$aSamuely, Tomas$$b3
001039747 7001_ $$0P:(DE-HGF)0$$aLyu, Zhongkui$$b4
001039747 7001_ $$0P:(DE-HGF)0$$aYan, Jiaqiang$$b5
001039747 7001_ $$0P:(DE-HGF)0$$aOnufriienko, Oleksander$$b6
001039747 7001_ $$0P:(DE-HGF)0$$aSzabó, Pavol$$b7
001039747 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b8$$ufzj
001039747 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b9$$ufzj
001039747 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b10$$ufzj
001039747 8564_ $$uhttps://arxiv.org/abs/2304.08142
001039747 909CO $$ooai:juser.fz-juelich.de:1039747$$pVDB
001039747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001039747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187583$$aForschungszentrum Jülich$$b1$$kFZJ
001039747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188290$$aForschungszentrum Jülich$$b2$$kFZJ
001039747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
001039747 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
001039747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
001039747 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)128791$$aRWTH Aachen$$b8$$kRWTH
001039747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b9$$kFZJ
001039747 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)174438$$aRWTH Aachen$$b9$$kRWTH
001039747 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)174438$$a JARA$$b9
001039747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b10$$kFZJ
001039747 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001039747 9141_ $$y2024
001039747 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001039747 980__ $$apreprint
001039747 980__ $$aVDB
001039747 980__ $$aI:(DE-Juel1)PGI-3-20110106
001039747 980__ $$aUNRESTRICTED