001     1039747
005     20250220092010.0
024 7 _ |a arXiv:2304.08142
|2 arXiv
037 _ _ |a FZJ-2025-01786
088 _ _ |a arXiv:2304.08142
|2 arXiv
100 1 _ |a Martinez-Castro, Jose
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a One-dimensional topological superconductivity in a van der Waals heterostructure
260 _ _ |c 2023
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1739863356_1701
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 13 pages, 4 figures
520 _ _ |a One-dimensional (1D) topological superconductivity is a state of matter that is not found in nature. However, it can be realised, for example, by inducing superconductivity into the quantum spin Hall edge state of a two-dimensional topological insulator. Because topological superconductors are proposed to host Majorana zero modes, they have been suggested as a platform for topological quantum computing. Yet, conclusive proof of 1D topological superconductivity has remained elusive. Here, we employ low-temperature scanning tunnelling microscopy to show 1D topological superconductivity in a van der Waals heterostructure by directly probing its superconducting properties, instead of relying on the observation of Majorana zero modes at its boundary. We realise this by placing the two-dimensional topological insulator monolayer WTe$_2$ on the superconductor NbSe$_2$. We find that the superconducting topological edge state is robust against magnetic fields, a hallmark of its triplet pairing. Its topological protection is underpinned by a lateral self-proximity effect, which is resilient against disorder in the monolayer edge. By creating this exotic state in a van der Waals heterostructure, we provide an adaptable platform for the future realization of Majorana bound states. Finally, our results more generally demonstrate the power of Abrikosov vortices as effective experimental probes for superconductivity in nanostructures.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Wichmann, Tobias
|0 P:(DE-Juel1)187583
|b 1
|e First author
|u fzj
700 1 _ |a Jin, Keda
|0 P:(DE-Juel1)188290
|b 2
|u fzj
700 1 _ |a Samuely, Tomas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lyu, Zhongkui
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yan, Jiaqiang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Onufriienko, Oleksander
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Szabó, Pavol
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 8
|u fzj
700 1 _ |a Ternes, Markus
|0 P:(DE-Juel1)174438
|b 9
|u fzj
700 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 10
|u fzj
856 4 _ |u https://arxiv.org/abs/2304.08142
909 C O |o oai:juser.fz-juelich.de:1039747
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188290
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128791
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)174438
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 9
|6 P:(DE-Juel1)174438
910 1 _ |a JARA
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-Juel1)174438
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)162163
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21