001     1039808
005     20250414120457.0
024 7 _ |a 10.1038/s41593-025-01900-x
|2 doi
024 7 _ |a 1097-6256
|2 ISSN
024 7 _ |a 1546-1726
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01808
|2 datacite_doi
024 7 _ |a 39934304
|2 pmid
024 7 _ |a WOS:001419793000001
|2 WOS
037 _ _ |a FZJ-2025-01808
082 _ _ |a 610
100 1 _ |a Paquola, Casey
|0 P:(DE-Juel1)187055
|b 0
|e Corresponding author
245 _ _ |a Author Correction: The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow
260 _ _ |a New York, NY
|c 2025
|b Nature America
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742214186_12051
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The default mode network (DMN) is implicated in many aspects of complex thought and behavior. Here, we leverage postmortem histology and in vivo neuroimaging to characterize the anatomy of the DMN to better understand its role in information processing and cortical communication. Our results show that the DMN is cytoarchitecturally heterogenous, containing cytoarchitectural types that are variably specialized for unimodal, heteromodal and memory-related processing. Studying diffusion-based structural connectivity in combination with cytoarchitecture, we found the DMN contains regions receptive to input from sensory cortex and a core that is relatively insulated from environmental input. Finally, analysis of signal flow with effective connectivity models showed that the DMN is unique amongst cortical networks in balancing its output across the levels of sensory hierarchies. Together, our study establishes an anatomical foundation from which accounts of the broad role the DMN plays in human brain function and cognition can be developed.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Garber, Margaret
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Frässle, Stefan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Royer, Jessica
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhou, Yigu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tavakol, Shahin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rodriguez-Cruces, Raul
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cabalo, Donna Gift
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Valk, Sofie
|0 P:(DE-Juel1)173843
|b 8
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 9
700 1 _ |a Margulies, Daniel S.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Evans, Alan
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 12
|u fzj
700 1 _ |a Jefferies, Elizabeth
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Smallwood, Jonathan
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Bernhardt, Boris C.
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1038/s41593-025-01900-x
|0 PERI:(DE-600)1494955-6
|p 688
|t Nature neuroscience
|v 28
|y 2025
|x 1097-6256
856 4 _ |u https://juser.fz-juelich.de/record/1039808/files/s41593-025-01900-x.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1039808
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)173843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131631
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NEUROSCI : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT NEUROSCI : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21