001039818 001__ 1039818
001039818 005__ 20260107202514.0
001039818 0247_ $$2doi$$a10.1021/acs.jpclett.4c03456
001039818 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01815
001039818 037__ $$aFZJ-2025-01815
001039818 082__ $$a530
001039818 1001_ $$0P:(DE-Juel1)188787$$aHoang, Gia Linh$$b0
001039818 245__ $$aRefining Ligand Poses in RNA/Ligand Complexes of Pharmaceutical Relevance: A Perspective by QM/MM Simulations and NMR Measurements
001039818 260__ $$aWashington, DC$$bACS$$c2025
001039818 3367_ $$2DRIVER$$aarticle
001039818 3367_ $$2DataCite$$aOutput Types/Journal article
001039818 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767787266_8541
001039818 3367_ $$2BibTeX$$aARTICLE
001039818 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001039818 3367_ $$00$$2EndNote$$aJournal Article
001039818 520__ $$aPredicting the binding poses of ligands targeting RNAs is challenging. Here, we propose that using first-principles quantum mechanics/molecular mechanics (QM/MM) simulations, which incorporate automatically polarization effects, can help refine the structural determinants of ligand/RNA complexes in aqueous solution. In fact, recent advances in massively parallel computer architectures (such as exascale machines), combined with the power of machine learning, are greatly expanding the domain of applicability of these types of notoriously expensive simulations. We corroborate this proposal by carrying out a QM/MM-based study on a ligand targeting CAG repeat-RNA, involved in Huntington’s disease. The calculations indeed show a clear improvement in the ligand binding properties, and they are consistent with the NMR measurements, also performed here. Thus, this type of approach may be useful for practical applications in the design of ligands targeting RNA in the near future.
001039818 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001039818 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001039818 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001039818 7001_ $$00000-0001-8126-5905$$aRöck, Manuel$$b1
001039818 7001_ $$0P:(DE-HGF)0$$aTancredi, Aldo$$b2
001039818 7001_ $$00000-0003-1290-9556$$aMagauer, Thomas$$b3
001039818 7001_ $$0P:(DE-Juel1)190906$$aMandelli, Davide$$b4
001039818 7001_ $$0P:(DE-Juel1)171786$$aSchulz, Jörg B.$$b5$$ufzj
001039818 7001_ $$0P:(DE-HGF)0$$aKrauss, Sybille$$b6
001039818 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b7
001039818 7001_ $$00000-0002-2177-983X$$aTollinger, Martin$$b8$$eCorresponding author
001039818 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b9$$eCorresponding author
001039818 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.4c03456$$gVol. 16, no. 7, p. 1702 - 1708$$n7$$p1702 - 1708$$tThe journal of physical chemistry letters$$v16$$x1948-7185$$y2025
001039818 8564_ $$uhttps://juser.fz-juelich.de/record/1039818/files/jz4c03456_si_001.pdf$$yOpenAccess
001039818 8564_ $$uhttps://juser.fz-juelich.de/record/1039818/files/refining-ligand-poses-in-rna-ligand-complexes-of-pharmaceutical-relevance-a-perspective-by-qm-mm-simulations-and-nmr.pdf$$yOpenAccess
001039818 8767_ $$d2025-03-12$$eHybrid-OA$$jPublish and Read
001039818 909CO $$ooai:juser.fz-juelich.de:1039818$$popenaire$$pVDB$$popen_access$$pdriver$$popenCost$$pdnbdelivery
001039818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188787$$aForschungszentrum Jülich$$b0$$kFZJ
001039818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190906$$aForschungszentrum Jülich$$b4$$kFZJ
001039818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171786$$aForschungszentrum Jülich$$b5$$kFZJ
001039818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b7$$kFZJ
001039818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b9$$kFZJ
001039818 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001039818 9141_ $$y2025
001039818 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001039818 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001039818 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001039818 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001039818 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001039818 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001039818 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2022$$d2025-01-07
001039818 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2022$$d2025-01-07
001039818 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001039818 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001039818 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001039818 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001039818 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001039818 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001039818 920__ $$lyes
001039818 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
001039818 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
001039818 980__ $$ajournal
001039818 980__ $$aVDB
001039818 980__ $$aUNRESTRICTED
001039818 980__ $$aI:(DE-Juel1)INM-11-20170113
001039818 980__ $$aI:(DE-Juel1)INM-9-20140121
001039818 980__ $$aAPC
001039818 9801_ $$aAPC
001039818 9801_ $$aFullTexts