001040277 001__ 1040277
001040277 005__ 20250310131246.0
001040277 0247_ $$2doi$$a10.1021/acs.nanolett.4c01106
001040277 0247_ $$2ISSN$$a1530-6984
001040277 0247_ $$2ISSN$$a1530-6992
001040277 0247_ $$2pmid$$a39185821
001040277 0247_ $$2WOS$$aWOS:001299122700001
001040277 037__ $$aFZJ-2025-01816
001040277 082__ $$a660
001040277 1001_ $$00000-0002-2629-6212$$aFan, Qitang$$b0$$eFirst author
001040277 245__ $$aBottom-up Synthesis and Characterization of Porous 12-Atom-Wide Armchair Graphene Nanoribbons
001040277 260__ $$aWashington, DC$$bACS Publ.$$c2024
001040277 3367_ $$2DRIVER$$aarticle
001040277 3367_ $$2DataCite$$aOutput Types/Journal article
001040277 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740374820_15599
001040277 3367_ $$2BibTeX$$aARTICLE
001040277 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040277 3367_ $$00$$2EndNote$$aJournal Article
001040277 520__ $$aAlthough several porous carbon/graphene nanorib-bons (GNRs) have been prepared, a direct comparison of theelectronic properties between a nonporous GNR and itsperiodically perforated counterpart is still missing. Here, we reportthe synthesis of porous 12-atom-wide armchair-edged GNRs froma bromoarene precursor on a Au(111) surface via hierarchicalUllmann and dehydrogenative coupling. The selective formation ofporous 12-GNRs was achieved through thermodynamic andkinetic reaction control combined with tailored precursor design.The structure and electronic properties of the porous 12-GNRwere elucidated by scanning tunneling microscopy/spectroscopyand density functional theory calculations, revealing that the poresinduce a 2.17 eV band gap increase compared to the nonporous12-AGNR on the same surface.
001040277 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001040277 588__ $$aDataset connected to DataCite
001040277 7001_ $$00000-0002-3804-4573$$aRuan, Zilin$$b1
001040277 7001_ $$0P:(DE-HGF)0$$aWerner, Simon$$b2
001040277 7001_ $$0P:(DE-HGF)0$$aNaumann, Tim$$b3
001040277 7001_ $$0P:(DE-HGF)0$$aBolat, Rustem$$b4
001040277 7001_ $$0P:(DE-HGF)0$$aMartinez-Castro, Jose$$b5
001040277 7001_ $$0P:(DE-HGF)0$$aKoehler, Tabea$$b6
001040277 7001_ $$0P:(DE-HGF)0$$aVollgraff, Tobias$$b7
001040277 7001_ $$0P:(DE-HGF)0$$aHieringer, Wolfgang$$b8
001040277 7001_ $$0P:(DE-HGF)0$$aMandalia, Raviraj$$b9
001040277 7001_ $$0P:(DE-HGF)0$$aNeiß, Christian$$b10
001040277 7001_ $$0P:(DE-HGF)0$$aGörling, Andreas$$b11
001040277 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b12
001040277 7001_ $$00000-0001-8244-8201$$aSundermeyer, Jörg$$b13$$eCorresponding author
001040277 7001_ $$00000-0001-5579-2568$$aGottfried, J. Michael$$b14$$eCorresponding author
001040277 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.4c01106$$gVol. 24, no. 35, p. 10718 - 10723$$n35$$p10718 - 10723$$tNano letters$$v24$$x1530-6984$$y2024
001040277 909CO $$ooai:juser.fz-juelich.de:1040277$$pVDB
001040277 9101_ $$0I:(DE-HGF)0$$60000-0002-2629-6212$$aExternal Institute$$b0$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$60000-0002-3804-4573$$aExternal Institute$$b1$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001040277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
001040277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
001040277 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b8$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b9$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b10$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b11$$kExtern
001040277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b12$$kFZJ
001040277 9101_ $$0I:(DE-HGF)0$$60000-0001-8244-8201$$aExternal Institute$$b13$$kExtern
001040277 9101_ $$0I:(DE-HGF)0$$60000-0001-5579-2568$$aExternal Institute$$b14$$kExtern
001040277 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001040277 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001040277 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2024-12-18
001040277 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001040277 980__ $$ajournal
001040277 980__ $$aVDB
001040277 980__ $$aI:(DE-Juel1)PGI-3-20110106
001040277 980__ $$aUNRESTRICTED