001     1040277
005     20250310131246.0
024 7 _ |a 10.1021/acs.nanolett.4c01106
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 39185821
|2 pmid
024 7 _ |a WOS:001299122700001
|2 WOS
037 _ _ |a FZJ-2025-01816
082 _ _ |a 660
100 1 _ |a Fan, Qitang
|0 0000-0002-2629-6212
|b 0
|e First author
245 _ _ |a Bottom-up Synthesis and Characterization of Porous 12-Atom-Wide Armchair Graphene Nanoribbons
260 _ _ |a Washington, DC
|c 2024
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740374820_15599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although several porous carbon/graphene nanorib-bons (GNRs) have been prepared, a direct comparison of theelectronic properties between a nonporous GNR and itsperiodically perforated counterpart is still missing. Here, we reportthe synthesis of porous 12-atom-wide armchair-edged GNRs froma bromoarene precursor on a Au(111) surface via hierarchicalUllmann and dehydrogenative coupling. The selective formation ofporous 12-GNRs was achieved through thermodynamic andkinetic reaction control combined with tailored precursor design.The structure and electronic properties of the porous 12-GNRwere elucidated by scanning tunneling microscopy/spectroscopyand density functional theory calculations, revealing that the poresinduce a 2.17 eV band gap increase compared to the nonporous12-AGNR on the same surface.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Ruan, Zilin
|0 0000-0002-3804-4573
|b 1
700 1 _ |a Werner, Simon
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Naumann, Tim
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bolat, Rustem
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Martinez-Castro, Jose
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Koehler, Tabea
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vollgraff, Tobias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hieringer, Wolfgang
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mandalia, Raviraj
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Neiß, Christian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Görling, Andreas
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 12
700 1 _ |a Sundermeyer, Jörg
|0 0000-0001-8244-8201
|b 13
|e Corresponding author
700 1 _ |a Gottfried, J. Michael
|0 0000-0001-5579-2568
|b 14
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.4c01106
|g Vol. 24, no. 35, p. 10718 - 10723
|0 PERI:(DE-600)2048866-X
|n 35
|p 10718 - 10723
|t Nano letters
|v 24
|y 2024
|x 1530-6984
909 C O |o oai:juser.fz-juelich.de:1040277
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-2629-6212
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-3804-4573
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128791
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 0000-0001-8244-8201
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 0000-0001-5579-2568
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21