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ABSTRACT 

Introduction 

In 2023 the first exascale supercomputer was opened to the public in the US. With a 

demonstrated 1.1 exaflops of performance, Frontier represents an unprecedented breakthrough in 

high performance computing (HPC). Currently, more (and more powerful) machines are being 

installed worldwide. Computer-aided drug design (CADD) is one of the fields of computational 

science that can greatly benefit from exascale computing for the benefit of the whole society. 

However, scaling CADD approaches to exploit exascale machines requires new algorithmic and 

software solutions. 

Areas covered 

Here, the authors consider physics-based and machine learning(ML)-aided techniques for the 

design of small molecule binders capable of leveraging modern parallel computer architectures. 

Specifically, the authors focus on HPC-oriented large-scale applications from the past three years 

that were enabled by (pre)exascale supercomputers by running on tens of thousands of 

accelerated nodes. 

Expert opinion 

 



 

In the area of ML, exascale computers can enable the training of generative models with 

unprecedented predictive power to design novel ligands, provided large amounts of high-quality 

data are available. Exascale computers could also unlock the potential of accurate ML-aided 

physics-based methods to boost the success rate of structure based drug design campaigns. 

Currently, however, methodological developments are still required to allow routine large-scale 

applications of such rigorous approaches. 

 

ARTICLE HIGHLIGHTS BOX 

●​ Recent studies pushed the boundaries of HPC-oriented physics-based and machine 

learning-aided computational tools for the discovery and development of small molecule 

binders 

●​ In machine learning-based drug design, exascale machines can enable fast training of 

generative models on massive data sets to guide the design of new ligands 

●​ In structure based drug design, exascale machine can enable routine docking of billions 

of small molecules, as well as the use of accurate molecular dynamics-based alchemical 

free energy methods via scalable automated workflows 

●​ Rigorous quantum mechanics/molecular mechanics molecular dynamics simulations 

enabled by extremely scalable software can increase hit to lead success rate of virtual 

screening campaigns by providing high quality structural information 

●​ Exascale computing will have a transformative impact in computer aided drug design 

only by increasing the throughput of these (often still time consuming) HPC-oriented 

approaches: data-driven methods provide viable solutions, however, further 

methodological developments are still required 

 

 



 

 

 

1. Introduction 

The process of drug discovery is one of the most difficult, time-consuming and 

resource-intensive endeavors in the healthcare industry. Depending on the therapy area, the cost 

of getting a novel drug to the market is estimated to range between 0.3 to 4.5 billion USD and 5 

to 15 years of development[1,2,3,4,5]. 

After the identification of a promising biological target (e.g., a protein), the initial stage of drug 

design campaigns typically involves two main tasks: i) the identification of chemical compounds 

with promising activity (hit molecules); ii) the optimization of the compounds properties (e.g., 

potency, selectivity, toxicity, pharmacokinetics) in the hit-to-lead and lead optimization stages to 

generate suitable candidates for pre-clinical and clinical trials. Performing these preliminary 

experiments in silico can drastically reduce the costs and the research time for developing a new 

drug molecule [6].  

Computer aided drug design (CADD) is an umbrella term indicating the collection of 

computational techniques used to discover, develop, and optimize chemical compounds. These 

methods include docking-based virtual screening, molecular modeling, and quantitative 

structure-activity relationships (QSAR)[7,8,9]. More recently, these have been flanked by 

artificial intelligence methods based on neural networks (NNs) [8,10]. The goal of such 

computational tools is to identify promising candidates, whose efficacy is subsequently tested in 

vitro and, eventually, in vivo. Nowadays, CADD is a well-established tool used by 

pharmaceutical companies and academic institutions to accelerate the early stages of drug 
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design[9,11,12]. Indeed, CADD has already played an important role in discovering many drugs 

that reached the consumer market[13,14,15,16,17]. 

Traditionally, CADD approaches are broadly classified into structure based drug design (SBDD) 

and ligand based drug design (LBDD). SBDD methods explicitly incorporate the information on 

the 3D structure of the biomolecular target – usually obtained through X-ray crystallography[18], 

nuclear magnetic resonance spectroscopy[19], or electron microscopy[20]. This enables the use 

of (i) docking methodologies to perform the virtual screening of large databases of small 

molecules to obtain a set of possible hits and an estimate of their binding mode, as well as (ii) the 

use of accurate atomistic simulations (e.g, alchemical techniques) to rank compounds based on 

their binding affinities. These approaches have found widespread use in the industry[21,22]. By 

including the 3D structure of the target, SBDD is expected to improve the compounds’ 

specificity and to provide valuable insights into the relevant protein-ligand interactions, which 

facilitates the rational design of more effective drugs. It is interesting to note that with the advent 

of accurate deep learning models  for protein structure prediction [23,24], nowadays fully 

in-silico SBDD campaigns can be envisioned.  

In cases where no reliable 3D structures of the targets are available, LBDD approaches can be 

used. In this case, the starting point is usually a set of known hits to the specific target, usually 

determined experimentally via (expensive and time consuming) high throughput biochemical 

assays [25,26]. LBDD methods can then be used to screen large databases of small molecules to 

search for compounds with similar chemical-physical properties [27]. 

Two critical aspects that affect the success rate of the above mentioned SBDD and LBDD 

approaches are the size of the searchable chemical space of drug-like compounds and the 

accuracy of the models used for the predictions of their properties. As is typical in these 
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scenarios, there is often a trade-off between computational cost and accuracy of the 

methodologies, which limits their domain of application. For example, docking simulations [28] 

can quickly explore fairly large datasets of small molecule binders with simplified empirical 

models, but their resolution is not sufficient to be employed in binding optimization, where the 

differences between tested molecules is small. On the other hand, atomistic molecular dynamics 

(MD)-based free energy methods are routinely applied to test congeneric series, but their 

computational cost limits them to at most a few hundreds of compounds [21] or even only a 

handful of them when employing quantum-mechanically accurate simulations [29,30].  

More recently there has been a lot of excitement about the capability of deep learning techniques 

to provide accurate predictions at much lower computational cost [31]. However, training these 

models is extremely computation and data-hungry and testing a single new idea typically 

requires days to weeks on large parallel machines. 

The unique parallelization capabilities offered by exascale machines have the potential to 

considerably push forward the limits of these trade-offs, enabling an efficient exploration of the 

chemical space using more accurate (physics-based or data-driven) methodologies. This will 

translate into a reduced time-to-solution and (consequently) cost of the drug discovery process, 

which impacts patients in the form of, e.g., insurance premiums and taxes. 

 

2. Challenges of exascale computing 

Modern supercomputers are extremely complex machines where computational resources are 

distributed across thousands of compute nodes interconnected via a high throughput and low 

latency communication network[32]. Each compute node typically consists of a few (typically 

one or two) central processing units (CPUs) mounted on the same board. CPUs, in turn, can 
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contain up to few tens of cores residing on the same die (see Figure 1a-c). The cores are the 

elementary processing elements that execute tasks independently from each other.  

An important aspect in HPC is the overhead associated with the fetching of the data from the 

computer memory. In fact, the memory bandwidth is the main bottleneck limiting the 

performance of modern computers [33]. In order to reduce this overhead, modern CPU 

architectures have hierarchical caching mechanisms implemented on chip to store temporary data 

physically close to each compute unit. Depending on the cache level, usually around 1-10 clock 

cycles are needed to fetch the data. This has to be compared to hundreds of clock cycles in case 

of main memory access. It is clear that caching of memory accesses is extremely important to 

achieve the highest level of performance as cache misses can lead to the loss of hundreds of 

clock cycles spent retrieving data from the main memory, which can potentially slow down the 

execution of the program by up to few orders of magnitude. It is the software developer’s job to 

design algorithms that maximize data re-usage on local caches. 

Exascale supercomputers push the complexity of distributed architecture to a whole new level by 

connecting several thousands of heterogeneous computing nodes that combine traditional 

general-purpose CPUs with powerful graphics processing units (GPUs) (see Figure 1d,e). The 

latter can be thought of as a special type of processing unit hosting hundreds of cores that 

enables the implementation of massively parallel shared-memory algorithms using dedicated 

programming models. 

An ideal HPC application is one that is able to scale efficiently on all the available resources. 

This means running on all the nodes while keeping the performance (flops) as close as possible 

to the nominal value guaranteed by the hardware architecture. Optimization of an application's 

performance targeting distributed heterogeneous parallel architectures is a very challenging 
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problem and designing algorithms that can effectively exploit exascale supercomputers requires 

careful considerations of the hardware organization at all levels, from the single CPU / GPU 

level up to the multiple nodes level. 

 

3. Opportunities of exascale computing for HPC-oriented CADD 

The extreme concurrency provided by exascale supercomputers represents a great opportunity to 

push the state-of-the art of HPC-oriented CADD for the design of small molecule binders (see 

Figure 2). Here, we highlight selected contributions that were able to exploit efficiently the 

unique capabilities of (pre)exascale machines. Specifically, we consider (1) machine learning 

(ML) methods used to train neuronal networks on unprecedented massive datasets. Exploiting 

the predictive power of large generative models trained on accurate and large experimental 

datasets bear the potential to reduce the time to identify in a reliable way novel, candidate 

antiviral drugs. (2) Docking-based virtual screening of large databases of drug-like molecules, 

also aided by ML, where exascale computing can be leveraged to expand the size of the 

explorable chemical space by orders of magnitudes. (3) Highly parallelizable MD-based 

alchemical free energy methods for binding affinity predictions. Designing automated workflows 

able to handle thousands of independent MD tasks on exascale computers can boost 

tremendously the throughput of these accurate methods making them feasible within large-scale 

drug screening campaigns. (4) Quantum mechanics-based MD simulations, enabled by 

HPC-oriented codes targeting modern heterogeneous architectures, which can allow routine 

applications of these rigorous approaches in SBDD. 

Most selected publications reviewed here participated in recent editions of the Gordon Bell 

Special Prize for High Performance Computing-Based COVID-19 Research. 

 



 

 

3.1 Training of generative neural network models on large datasets 

Applications of neural networks into the drug discovery process have been envisioned  since the 

emergence of deep learning [34]. NNs can learn patterns and correlations from data and generate 

predictions that can be tested in the laboratory [35]. In recent years, in particular, generative 

models gathered attention in CADD for their ability to propose novel compounds satisfying 

user-provided properties [31]. This effort was also spurred by the success of generative models in 

other fields, which was driven by a dramatic increase in the size of training datasets (hundreds of 

billions of data points) and models (billions to trillions parameters) [36]. Training NNs on this 

scale requires vast amounts of power and sophisticated parallelization techniques to spread the 

workload and the data over computational units [37]. Exascale computing could in principle 

further push the limits of these techniques. In the context of drug discovery, however, generating 

billions of high-quality data points through biochemical or physical assays is currently unfeasibly 

expensive, and thus data often represents a fundamental bottleneck for the adoption of these 

approaches. 

Generative models for small molecules have emerged as a promising route towards this goal 

since they can be trained in an unsupervised manner on large collections of chemical structures 

(e.g., in SMILES format) without the need of labeling the compounds with physico-chemical 

properties. These methods leverage this information to build general and rich representations of 

molecules that can be later used in specific prediction tasks (38), often after fine tuning the 

model in a separate stage using smaller datasets.  

Jacobs et al. were able to train an autoencoder generative model on >1.6 billion compounds in 

only 23 minutes, compared to previous state of the art that took a day on 1 million 
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compounds[39]. This result could be achieved by implementing a parallel training approach 

leveraging multiple and asynchronously coordinated trainers, which was able to strong scale to 

the whole Sierra supercomputer at the Lawrence Livermore National Laboratory (LLNL) with 

close to 100% parallel efficiency [40]. 

In another recent work, Blanchard et al. pre-trained a transformer-based language model on ~9.6 

billion molecules on the Summit supercomputer at Oak-Ridge Leadership Facilities (OLCF) [41] 

by exploiting massive data parallelism through optimizers capable of handling extremely large 

batch sizes (more than a million molecules) while limiting overfitting effects [42]. The model 

was then fine-tuned using a set of thousands of protein targets with binding affinity data [41] 

combined with a genetic algorithm approach to generate and score drug candidates as inhibitors 

targeting SARS-CoV-2 Mpro and PLpro proteins. A remarkable result is the reduction of 

pre-training time from days to hours while using a dataset nearly one order of magnitude larger 

compared to previous works on the same computer architecture.  

 

3.2 Virtual screening of massive molecular libraries 

As the task of virtual screening can be trivially parallelized over compounds, access to exascale 

machines can enable the exploration of a much larger portion of the drug-like chemical space. In 

this direction, much progress has been made in the past few years for the task of docking small 

molecules to their therapeutic target, pushing the boundaries of state-of-the-art SBDD. 

In their work, LeGrand and co-authors present the porting, optimization, and validation of the 

AutoDock-GPU program for large-scale protein-ligand docking calculations on the Summit 

supercomputer at OLCF [43]. The method was successfully applied to the initial screening of 

compounds targeting the SARS-CoV-2 virus’ Mpro and PLpro proteins. This contribution 
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represents the first effort to redesign a well-established and widely used docking code targeting 

modern accelerated HPC infrastructures.  

Building on the work of LeGrand and co-authors, Glaser et al. demonstrated extremely fast 

screening of massive chemical databases for COVID-19 drug discovery on Summit, achieving an 

order of magnitude reduction in time-to-solution compared to previous methods, docking over 

one billion compounds to SARS-CoV-2 Mpro and PLpro protein structures[44]. Their 

GPU-enabled parallel approach is based on an optimized version of AutoDock-GPU to generate 

and score binding poses. The workflow demonstrated an incredible average rate of 19,028 

compounds docked per second, corresponding to a 50⨉ speedup in time to solution compared to 

previous CPU-based methods. Re-ranking of the most favorable poses generated by the initial 

low-resolution docking simulations was subsequently used to complete the screening and suggest 

hit candidates. Specifically, the authors adopted the RFScore-VS family of machine-learning 

based scoring functions [45], which use descriptors characterizing the interacting atoms of the 

ligand and the protein in combination with random forests to predict ligand binding affinities 

[46]. This step of the pipeline adopted parallel database methods on GPUs for analyzing the 

massive docking output dataset and achieved a further 10⨉ speedup compared to previous 

methods.  

Another notable contribution is the “ab-initio” docking method of the TwoFold code developed 

by Hsu et al.[47]. This scalable software stack – which builds upon, and improves technical 

solutions first introduced by AlphaFold2 [48]– not only is able to predict how strongly a drug 

molecule will bind to a pathogen, but it is also trained to predict the structure of a given 

protein/ligand complex starting from the protein amino acid sequence and ligand chemical 

formulas, encoded as SMILES [49]. In TwoFold, the binding poses are predicted by a deep 
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learning model, while the binding affinity is predicted by the method of the neural tangent kernel 

(NKL) [50]. Training of the neural network was performed on the Summit supercomputer, using 

an experimental structural dataset of protein-ligand complexes extracted from a subset of the 

Protein Data Bank, while the NKL model was trained to predict binding affinities using ~1,4M 

sequence-ligand pairs and their corresponding experimental IC50 values. Training and validating 

the NKL model involved solving a set of >1M linear equations, which was done on the Frontier 

exascale supercomputer. The TwoFold approach was tested on a set of 195 protein-ligand 

complexes matching state-of-the-art implementations in quality and efficiency for binding 

affinity predictions, while additionally reconstructing protein structures. 

 

3.3 Scalable statistical mechanics-based methods for absolute binding affinities 

Molecular dynamics (MD) simulations are a powerful tool that can provide detailed insights on 

the mechanisms and energetics of molecular recognition phenomena. Compared to standard 

docking approaches, MD simulations are lower in throughput but thoroughly account for the 

dynamics of the system[51]. Because of this, besides providing detailed structural information, 

atomistic MD simulations can in principle provide more accurate predictions for the 

thermodynamic (and kinetic) binding parameters used to rank small molecules and guide rational 

drug design[52,53,54].  

Among these methods, alchemical free energy perturbation approaches are particularly suited to 

exploit massively parallel architectures. Within these frameworks, differences between the 

absolute binding free energies of small molecules binding to a target can be computed via 

independent or loosely dependent simulations at different points of a suitably defined 

thermodynamic cycle [55,56]. Simulations for different molecules and thermodynamic points are 
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easily parallelized as independent jobs on a supercomputer. Exascale computers can considerably 

reduce time-to-solution by allowing applications to larger sets of protein/ligand complexes, while 

significantly accelerating each MD task via GPU offloading [57,58,59,60]. The main challenge 

to scaling these methods stems from the complex setup of the simulations, which require 

designing automated workflows able to control the status of thousands of tasks and program new 

MD runs, when required. 

The work of Gapsys et al. [61] employed a non-equilibrium alchemical free energy perturbation 

method[55] to estimate the relative binding affinities for a set of previously published 

protein-ligand complexes[62] within a highly parallelized workflow. The pipeline made use of 

local resources for the preparatory stages – having relatively small computer cost – and a cluster 

for the final stage that involves carrying out MD simulations until satisfactory statistical 

convergence of binding affinities is achieved. By exploiting job parallelization, a cumulative 200 

μs of simulation was generated in only three days to obtain converged relative binding affinities 

for more than 500 protein-ligand pairs. The work demonstrates how high-throughput prediction 

of protein-ligand binding affinities is readily achievable with the high accuracy of all-atom 

alchemical free energy methods, provided that sufficient computational resources are available.  

In the work of Li et al.[63], a scalable workflow implementing a free energy perturbation 

method[64] to compute absolute binding affinities was used to speed up the discovery of 

antiviral drugs targeting SARS-CoV-2 Mpro and TMPRSS2 proteins. The authors introduced 

several approximations in the calculation of the binding affinity to perform a virtual screening 

for more than ten thousands protein-ligand binding systems on a new generation of Tianhe 

supercomputers using a task management tool specifically developed for automating the whole 

process, which involved more than 500,000 MD tasks. The best scoring ligands were tested in 
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further experimental validation in which 50 out of 98 compounds showed significant inhibitory 

activity towards Mpro, including an inhibitor that showed promising outcomes in subsequent 

clinical trials. 

The embarrassingly parallel nature of alchemical free energy calculations – which do not rely on 

frequent communications between different tasks – doesn’t require the use of supercomputers 

hosted by HPC centers, but can be efficiently implemented on other extremely parallel 

computing platforms as well. As a notable example, we mention here the Folding@Home 

distributed computing platform, which recently reached the exaflop peak performance by 

running parallel short MD simulations of the SARS-CoV-2 spike protein using computational 

time on 280,000 GPU and 4.8 million CPU cores donated by the community [65]. This platform 

was used to run more than 22,000 rigorous alchemical free energy calculations to prioritize the 

compounds for synthesis in a fully open source consortium for the development of antivirals 

targeting SARS-CoV-2 Mpro [66]. 

 

3.4 Molecular dynamics simulations including quantum mechanical effects 

Modern SBDD requires atomistic modeling of proteins interacting with small molecules that are 

expected to interfere with their functioning to achieve a desired therapeutic effect. Nowadays, 

most molecular simulations used in SBDD make use of simplified empirical force fields that do 

not account for (often essential) quantum mechanical phenomena. One way of overcoming this 

problem is by leveraging rigorous multiscale quantum mechanics / molecular mechanics 

(QM/MM) MD simulations[67]. QM/MM MD has already been applied to investigate bond 

forming/breaking processes of covalent inhibitor binding transition-metal based drugs and to 

study enzymatic reactions for the design of transition state-analog inhibitors[29,30,68].  
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QM/MM simulations approaches with relatively high-throughput (mainly point energy 

calculations and structural optimizations) have also been applied to improve the success rate of 

virtual screening campaigns by refining the starting geometries for docking, building more 

accurate charge models, and improving the accuracy of scoring functions[69]. While on one 

hand, QM/MM simulations have a much higher computer cost than force field-based ones, on the 

other, QM/MM MD codes scale better with increasing number of processors[70], and exascale 

computers may finally make them fruitable within the realm of drug design[71].  

Recent advances in QM/MM software development demonstrated efficient scaling up to >80 

kcores on the pre-exascale JUWELS machine at the Juelich Supercomputing Center studying the 

IDH1 enzyme, a target for the early diagnosis and treatment of brain cancer[72]. This was made 

possible by the use of an efficient framework, based on a multiple program multiple data 

approach, that interfaces existing QM and MM software, minimizing communication and 

preserving the performance of the QM layer, which ultimately dictates the scaling[73]. The 

studies of Ragavan et al. on the IDH1 enzyme[72,74], not only showcase the extreme scalability 

of state-of-the-art QM/MM software, but it also represents a clear example where using QM/MM 

MD simulations is indispensable to obtain high-quality structures for the screening of small 

molecules using docking approaches. 

 

4. Conclusions 

The advent of the exascale era in supercomputing can trigger exciting developments in computer 

aided drug design potentially cutting time and costs of drug design campaigns by improving the 

success rate of the initial in silico screening phases. It is foreseen that this goal will be achieved 

by developing integrated approaches combining extremely scalable implementations of AI-based 
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methods with accurate physics-based molecular simulations. A demonstration of how this 

ambitious goal could be achieved is provided by the works considered in this review, which we 

summarize below and in Table 1.  

The works of Jacobs et al.[39] and of Blanchard et al.[41] show how modern supercomputers 

allow extremely fast training of large ML models using massive databases of small molecules to 

predict binding affinities and suggest candidate hit molecules, demonstrating the power of ML to 

automate and accelerate drug design. Exascale machines can also push the boundaries of 

structure based drug design campaigns based on docking simulations. This can be achieved using 

HPC-oriented implementations of standard algorithms within scalable workflows that allow 

screening increasingly larger portions of the chemical space, as exemplified by the works of Le 

Grand et al.[43] and of Glaser et al.[44]. Furthermore, modern supercomputers enable fast 

training and fruition of AI-based folding algorithms to implement “ab-initio” docking 

approaches to predict binding affinities as well as ligand/protein structures starting from minimal 

information (protein primary structure and the ligand chemical formula)[47].  

Force-field based classical molecular dynamics simulations allow implementing theoretically 

rigorous statistical mechanics-based approaches to predict binding affinities. In this context, 

exascale machines could finally enable high-throughput molecular dynamics-based screening of 

large libraries of small molecules (or at least refinement of the output of lower resolution 

methods) beyond standard docking approaches, as shown by recent works of Gapsys et al.[61] 

and of Li et al.[63]. 

Finally, using quantum mechanically accurate molecular dynamics simulations is necessary 

whenever classical, force-field based methods fail to account for important electronic effects. 

This is the case of ligands binding to metalloproteins (which are estimated to represent 30% to 
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50% of all known proteins) and covalent ligands[29,75]. Here, multiscale QM/MM MD 

simulations provide a route to generate high-quality protein structures as a starting point for 

docking. These applications can only be enabled by extremely scalable HPC-oriented 

software[76]. A recent example of the crucial role that QM/MM simulations can play in CADD 

is provided by the works of Ragavan et al.[72,74] on the IDH1 enzyme as a target for the early 

diagnosis of brain cancer. 

 

5. Expert Opinion 

In the last decades we have witnessed a continuous technological advancement in HPC, which 

recently reached a new milestone by breaking the exascale limit. In the US, Frontier was 

launched as the first public exascale supercomputer in 2022, Aurora recently entered the top500 

list as the second most powerful machine to break the exascale limit (with a half-scale system), 

OceanLight and Tianhe-3 are operational in China. In Europe, JUPITER is due to launch in 

Germany in 2025, and there are plans to install exascale supercomputers in other EU countries as 

well. Designing, installing and operating these infrastructures represents a significant investment 

of public resources. Furthermore, the average lifetime of supercomputers in an HPC center is 

typically five years before they are decommissioned and replaced by the next generation 

machine. It is therefore of paramount importance that these projects hit the ground running, 

producing high-impact scientific results. Lots of efforts have been spent in the past years 

preparing for the exascale, setting up the required infrastructure and, most importantly, 

developing well in advance lighthouse applications to crack important problems in different 

scientific domains. Notably, in the biology domain, the design of novel therapeutics, including 

small ligands, has been identified as one of the most pressing problems to be addressed, as 
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testified by the commitment of large consortia involved in this technological transformation 

[77,78,79,80]. 

The advent of exascale machines has been preceded by general hype in the scientific community. 

However, at the moment, only a handful of exascale machines are operational, and applications 

in CADD are therefore very few in number. While the papers reviewed here are remarkable 

achievements that pushed the boundaries of HPC-oriented CADD methods for the design of 

small ligands in terms of scalability and time-to-solution, it has yet to be proven that this 

technology can actually have a transformative effect on the field: that is, leading to the design of 

novel drugs, quicker. 

Considering current trends in machine learning, particularly in the context of generative models 

[31], one can expect particularly impactful results from this area. Here, exascale supercomputers 

can enable the training of large models, including billions of parameters, using large 

experimental data sets, including protein structures as well as annotated libraries of 

thermodynamic parameters characterizing ligand/protein complexes. Nevertheless, while 

exascale computers in principle provide this capability, there are still bottlenecks related to 

inaccessibility, and/or lack of high-quality data, as well as limited interpretability, which restrict 

the application and affect the performance of such models, and must be therefore addressed first 

[35,81]. 

Virtual screening campaigns based on docking is a well-established method in structure based 

drug design that can straightforwardly take advantage of the concurrency provided by exascale 

computers to expand the size of the searchable chemical space of drug-like molecules. However, 

the extent to which massive virtual screening campaigns can improve hit to lead success 

crucially depend on the quality of the scoring function, as well as on the reliability of the target 
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protein structures. Therefore, the priority in this field should focus on increasing the throughput 

of more accurate physics-based methods for the prediction of structural and thermodynamic 

properties [71]. Establishing efficient automated workflows on exascale machines can boost the 

throughput of molecular dynamics based approaches, such as alchemical free energy 

calculations, to improve the hit to lead success when incorporated in virtual screening pipelines. 

However, also application of these methods are limited due to the approximations adopted to 

describe the interatomic interactions implemented by classical force-fields. Making rigorous 

multiscale QM/MM MD simulations a standard for pharmacology will represent a major 

breakthrough in terms of efficiency in discriminating true from false positives in virtual 

screening campaigns and, for rational drug design, by providing high-quality structural 

information and microscopic insights for the engineering of novel ligands. This goal can be 

achieved only by designing HPC-oriented QM software able to scale on heterogeneous 

architectures [82,83,84,85,86] in combination with efficient QM/MM interfaces [73,87,88].  

While state-of-the-art software already enables routine QM/MM simulation of large biological 

systems of pharmaceutical relevance [72,74], the performance of QM/MM MD simulations are 

still very far from enabling their direct application in combination with free energy methods for 

the prediction of thermodynamic and kinetic parameters. Scalable data-driven methods can 

provide a route to overcome this issue too, for example, by developing ML-based rigorous free 

energy perturbation approaches [89,90]. These approaches rely on relatively cheap classical MD 

simulations to generate an ensemble of protein/ligand configurations. Static QM/MM 

calculations on the generated poses are then performed in an iterative manner to variationally 

optimize the estimate of the binding free energies at the QM/MM level. These calculations are 

easily parallelizable and can therefore straightforwardly exploit massively parallel architectures. 
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Specifically, exascale machines could be efficiently leveraged by implementing the training 

within workflows able to generate the data and update the neural network in an unsupervised, 

automated manner. At the present stage, however, there are still methodological developments 

required to adapt these approaches to multiscale QM/MM simulations in explicit solvent. 

Alternatively, another promising direction opened by machine learning is that of neural network 

potentials. While training robust potentials that can be applied to biological systems is still a 

challenge, these models are sufficiently expressive to provide QM-like accuracy at a fraction of 

the cost (that is, without severely affecting the performance of MD simulations) and they have 

already been shown to scale over thousands of GPUs allowing large scale applications [91,92]. 
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Appl. 2023;37(1):45–57.* 
 
The authors implemented a scalable workflow to perform binding free energy calculations for the 
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This paper demonstrates how multiscale QM/MM MD simulations, enabled by extremely 

scalable software, can play an invaluable role in structure based drug design campaigns by 

providing high-quality protein structures for subsequent docking campaigns. 
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Figure 1: (a) A modern supercomputer can be schematically represented as a set of 

interconnected computing nodes. (b) Each compute node contains several CPUs mounted on the 

same board. (c) Modern CPUs nowadays host several (4, 8, 12 or more) general purpose cores 

residing on the same die. (d) Current exascale supercomputers make use of heterogeneous nodes, 
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where CPUs are coupled to one or more GPUs, each hosting hundreds of compute units. (e) The 

FRONTIER exascale supercomputer at the Oak Ridge National Laboratories counts a total of 

9,408 compute nodes. Each compute node contains one 64-core CPU, with access to 512 Gb of 

RAM, and eight GPUs. Each GPU contains 110 compute units and has access to 64 GB of 

high-bandwidth memory. (The image of the FRONTIER supercomputer was originally posted to 

Flickr by OLCF at https://flickr.com/photos/151938121@N02/52117623843. It was reviewed on 

13 June 2022 by FlickreviewR 2 and was confirmed to be licensed under the terms of the 

cc-by-2.0 (https://creativecommons.org/licenses/by/2.0/)) 

 

Figure 2: The diagram illustrates the different HPC-oriented CADD approaches for the design of 

small molecule binders that can take advantage of exascale computing. (The QM/MM 

schematics (bottom right) was originally posted at 

https://www.cp2k.org/_detail/exercises:2016_summer_school:qmmmcartoon.png?id=ev

ents%3A2016_summer_school%3Aqmmm. It is licensed under the following license: 

 

https://www.cp2k.org/_detail/exercises:2016_summer_school:qmmmcartoon.png?id=events%3A2016_summer_school%3Aqmmm
https://www.cp2k.org/_detail/exercises:2016_summer_school:qmmmcartoon.png?id=events%3A2016_summer_school%3Aqmmm
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Table 1: The table reports the main achievements of selected works that leveraged (pre)exascale 

supercomputers to push the boundaries of different computational methods in drug design and 

discovery. 

Original papers Computational 

Resources 

Category Main Achievement 

Jacobs et al. 4,320 GPU-nodes of 

the Sierra 

supercomputer at 

LLNL 

Machine Learning Record time of 23 

minutes to train a 

generative model on a 

dataset of >1.6 billion 

compounds 

Blanchard et al. 4,032 GPU-nodes of 

the  

Summit 

supercomputer at 

OLCF 

Machine Learning Record time of few 

hours to pre-train a 

large language model 

on a dataset of 9.6 

billion molecules 

 



 

Glaser et al. 4,602 GPU-nodes of 

the  

Summit 

supercomputer at 

OLCF 

Docking Record time for 

molecular docking 

1.37 billion 

compounds 

to SARS-CoV-2 

proteins, reaching an 

average rate of 

19,028 compounds 

docked per second 

Hsu et al. 128 GPU-nodes of 

the Frontier exascale 

supercomputer at 

OLCF 

4,056 GPU-nodes of 

the  

Summit 

supercomputer at 

OLCF 

Machine Learning Train the first 

deep-learning model 

for protein-ligand 

structure prediction 

from sequence. Train 

and validate an 

infinitely wide deep 

neural 

network for binding 

affinity predictions, 

solving a 1.15M 

linear system within 

1.5 minutes 

 



 

Li et al. 75,000 nodes of the 

new 

generation Tianhe 

supercomputer 

Molecular Dynamics Complete a free 

energy 

perturbation-based  

virtual 

screening of ~12,000 

ligand-receptor pairs 

within six days 

Ragavan et al. 1,746 CPU-nodes of 

the JUWELS Cluster 

supercomputer at JSC 

QM/MM Molecular 

Dynamics 

The work reports 

unprecedented strong 

scaling in a QM/MM 

MD simulation of a  

pharmacologically 

relevant enzyme 

 

 

 


