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INTRODUCTION

Problem setup
= [ncident field v satisfies

Av+KkKv=0 inR2, " /W
= Total field u = w + v satisfies \
Au+Kkenu=0 IinR?.

= Scattered field w satisfies the oD
Sommerfeld radiation condition.
\ W
1

= k > 0 is the wave number. v W/

= n (constant) is the index of
refraction.

= D is simply-connected and
star-shaped.
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INTRODUCTION

Problem setup

= Scattered field satisfies
() oim /4 GiklIx] %)+ 0 (H H 3/2) x|
w(x) = w(X) + X||~ . IX|] — o0
V8rk \/||X||
uniformly with respect to X = x/||x|| € S' = {x € R?: ||x|| = 1}.
= Far-field w*(Xx) is defined on the unit circle S'.
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INTRODUCTION

Problem setup (first introduced by Kirsch (1986) and Colton & Monk (1988))

= Take v = u/(x; d, k) = ¢*? as incident plane wave with direction d € S'.

= Then, we have w™(X; d, k).

= Inverse problem: Given the wave number k > 0 and the far-field patterns
w>(X; d, k) for all X, d € S' determine the shape of the scattering obstacle D.

= Far-field operator

Filg](%) = / w*(%: d, k)g(d)ds(d), X c§'

St

= Kirsch’s factorization method: Is the far-field operator Fy : L2(S') — L2(S")
injective?
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INTRODUCTION

Problem setup (first introduced by Kirsch (1986) and Colton & Monk (1988))

= The far-field operator Fx : L2(S') — L?(S") is injective and has dense range if
and only if k > 0 is not a non-scattering wave number (NSWN).

= |nterior transmission problem (ITP):

Av+k?v=0 inD,

Aw+nk®w =0 inD,
v=w onodD,
o,v=0o,w onoD.

= Given n € L>~(D), k > 0 is called (real) transmission eigenvalue (TE) if the
ITP is solved for non-trivial v, w € L?(D) such that (v — w) € HZ(D).
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MOTIVATION

Problem setup

Let \V be the set of NSWNs and 7 be the set of TEs.

Obviously, we have N/ C T.

Many methods are available to numerically compute TEs and corresponding
vin D such as

= finite element method,

= boundary integral equations,

= inside-outside-duality method, and

= modified method of fundamental solutions.

If we can extend v from D to RZ\E, then a TE is also a NSWN.
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MOTIVATION

What is known (the extreme cases)?
= Unit disk, n = 4:
N =T = {2.9026,3.3842,3.4121,3.9765,.. .} .
With k ~ 3.3842, the function
v(F,0) = Jo(k-F)

used as an incident field does not produce a scattering field. w inside D is
given by

2o (k) oo
w(r,0) = JO(Z?) Jo(2k-T).

= Unit square, n=4: N' = () and
T ={5.4761,6.1003,6.1844,6.6510, ...} .
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MOTIVATION

What do we investigate?

= Can we construct a method to determine whether v can be extended to some
B,(0) > D?

= |f v cannot be extended, then TE k will not be a NSWN.

= Otherwise, k is a possible NSWN candidate.
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THE PROCEDURE

The constrained minimization problem

: 2 2
o = min vV — + |0, (v — w + A|v
waei=,omin e wlZy - wR g o
S.t.
_ 2 B 2
v = w2y o+ 100 = WIZ, VI + W10y + AV e oy = 1
(1)

= )\ > 0is a Tikhonov parameter to penalize blow-up behavior of v in the
exterior.

= Kk is a given TE of D.

= Vy(k) and Wy(v/nk) are N-dependent-dimensional subspaces of global
Helmholtz solutions with wave numbers k and /nk, respectively.
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THE PROCEDURE

The constrained minimization problem

We use Fourier-Bessel functions (FBF) (in polar coordinates (7, ¢))

Vn(k) = {aoJo(kT’) + Z Jp(KT) (ap exp(ipg) + Bp exp(—ipg)) } ,
p=1

@)
N
Wi(v/k) = {%Jomm 37 Jo(VKF) (3o exp(iD6) + S exp(~ip5)) } ,

p=1

They are entire solutions to the Helmholtz equations and additionally
L2-biorthogonal on disks of arbitrary radii.

JULICH
SUPERCOMPUTING
CENTRE

.
Member of the Helmholtz Association MoWP 2025 Karlsruhe (MS15) | February 26", 2025 Andreas Kleefeld 'J J U L I c H

Forschungszentrum




THE PROCEDURE

The constrained minimization problem

Theorem

Let D be a smooth domain that is star-shaped with respect to a ball, let k > 0 be
some TE of D, B,(0) D> D forr > 0 and (Vn.x.,, W.nr) € Vn(k) x Wn(v/Nk) be the
corresponding minimizer of (1) on B.(0) for A > 0 and N € N with minimum oy, .
Then k is a NSWN if and only if

0 0 . - ONXr
lim lim inf
X—0 N—=00 x X

for all r > 0 such that D c B,(0).

If the numerical computation of %2~ for large N, small A, and large r, stays small,
indicates a possible NSWN. Otherwise, we do not have a NSWN.
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NUMERICAL IMPLEMENTATION

The constrained minimization problem

= Let r > 0 such that D ¢ B,(0). We use the computational points:
® pboundary points x; € 9D for 1 < i < Np,
= interior points y; € Dfor 1 </ <N,
m exterior points z; € B,(0)\D for 1 </ < Ng.
= Further, let N € N (can be extended to N € N/2) such that N < Ng, N;, Ng
and let

{®jkt1<j<ens1 C Vn(k) ,
{4 vk fr<j<ens1 C Wi(Vnk)

be the canonical basis of Fourier Bessel functions from (2) for some
(numerically) exact TE k.
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NUMERICAL IMPLEMENTATION

The constrained minimization problem

We setfor1 <j<2N+1

( Wn(B(0)\D)) =0u¢jk(z), 1 <i<Ng
I?]
' 1 JULICH
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NUMERICAL IMPLEMENTATION

The constrained minimization problem

= Construct block matrix

Vn(0D) Wn(0D)
d,Vn(0D) 8, Wn(0D)
Mege(N, A, r) == | A+ Vy(B,(0)\D) 0 € CNex(4NF2) = (3)
V(D) 0
0 Wn(D)

with Ny := 2Ng + Ng + 2N, and A\ > 0.
= QR decomposition

OB(N7 )‘7 r)
MFBF(N7>‘ar):Q(Na/\ar)R(Na)‘ar): OE(Nv)\ar) R(Na)‘7r)‘
A
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NUMERICAL IMPLEMENTATION

The constrained minimization problem

= Set
o QB(NJ >‘a r)
o (N. 2 1) = <OE(N, )
= Numerical solution to (1) becomes

min _||Qge(N, A, r)q|| = Smin(N, A, 1) , (4)
qe(c4N+27
lqll=1

where spin(N, A, r) denotes the minimal singular value of Qg £(N, A, r)
= |t represents the discrete equivalent of oy .
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NUMERICAL RESULTS

The unit disk, n = 4, k =~ 2.9026, r =5
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We see in the A — (smin(N, A,5)/A)-plots that for each fixed A > 0 the
corresponding point on the graph approaches a reasonably small value as N
grows. We know that all TEs are NSWN, hence k ~ 2.9026 is a NSWN. Our
numerical method confirms this.
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NUMERICAL RESULTS

The ellipse with half-axis 1 and 0.8, n =4, k ~ 3.4852,r =5
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We see in the A — (smin(N, A,5)/A)-plots that for each fixed A > 0 the
corresponding point on the graph approaches a reasonably small value as N

grows for decreasing A. According to Theorem 1, we expect k ~ 3.4852 to be a
NSWN.
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NUMERICAL RESULTS

The ellipse with half-axis 1 and 0.5, n = 4, k ~ 5.4092,r =5

0.5-ellipse
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We see in the A — (Smin(N, A, 5)/))-plots that for any A < 10~ the corresponding
point on the graph increases independent of the growing N. According to
Theorem 1, we expect k ~ 5.4092 to be a pure TE.
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NUMERICAL RESULTS

The unit square, n =4, k ~ 6.1003, r =5
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We see in the A — (Smin(N, A, 5)/))-plots that for any A < 10~ the corresponding
point on the graph increases independent of the growing N. According to Theorem
1, we expect k ~ 6.1003 to be a pure TE. We know that there is no NSWN.
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NUMERICAL RESULTS

The ellipse using Mathieu functions

= Consider separation of variables using elliptic coordinates.
= L eads to radial and angular Mathieu functions (there are four different ones).

= |TP leads to the computation of a determinant of a matrix of infinite size
containing expressions involving such Mathieu functions.
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NUMERICAL RESULTS

The 0.8-ellipse using Mathieu functions
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Claim: All TEs are NSWNSs. The eigenfunctions can be analytically extended far
away from the boundary.
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NUMERICAL RESULTS

The 0.5-ellipse using Mathieu functions

ITE-Prob: v as approx of 6 CEodd fens, Zero=4.330686

pProx of 6 CEeven fons, Zero=4.368957

v as approx of 6 SEeven fens, Zero=5.601249

Claim: All TEs are not NSWNSs. The eigenfunctions can be analytically extended
close to the boundary but not far away.
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SUMMARY

= Presented a numerical method to analytically extend the eigenfunction v
corresponding to a TE locally.

= Numerical and theoretical results are in agreement with the disk and the unit
square.

= Numerical results for the ellipse are the same when using Mathieu-functions
directly.

= Theorem 1 gives us numerical tendency to say whether a TE is a NSWN or
not.

= Might give insight whether we really have () # N C T for other domains.
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OUTLOOK

= However, the stability of our method is only valid for disc-like domains as for
other domains the FBF-biorthogonality is lost.

= Hence, due to an increase of the condition number of Mgge(N, A, r) the
quantity smin(N, A, r)/ X is prone to errors and due to large N.

= Try to use a domain-dependent ansatz instead (ML) to improve condition
number.

= Further investigate whether there is critical half-axis for an ellipse such that
we have the extreme cases (unit disk vs. unit square). We claim there is!

= Looking forward to your ideas, comments, and inspiring conversations.
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