

NON-SCATTERING WAVE NUMBERS VERSUS TRANSMISSION EIGENVALUES

(joint work with Lukas Pieronek)

MoWP 2025 Karlsruhe (MS15) | February 26th, 2025 | Andreas Kleefeld | Jülich Supercomputing Centre

Problem setup

Incident field v satisfies

$$\Delta v + k^2 v = 0$$
 in \mathbb{R}^2 .

■ Total field u = w + v satisfies

$$\Delta u + k^2 n u = 0$$
 in \mathbb{R}^2 .

- Scattered field w satisfies the Sommerfeld radiation condition.
- k > 0 is the wave number.
- n (constant) is the index of refraction.
- D is simply-connected and star-shaped.

Andreas Kleefeld

Problem setup

Scattered field satisfies

$$w(x) = \frac{\mathrm{e}^{\mathrm{i}\pi/4}}{\sqrt{8\pi k}} \frac{\mathrm{e}^{\mathrm{i}k\|x\|}}{\sqrt{\|x\|}} w^{\infty}(\widehat{x}) + \mathcal{O}\left(\|x\|^{-3/2}\right), \quad \|x\| \to \infty$$

uniformly with respect to $\hat{x} = x/\|x\| \in \mathbb{S}^1 = \{x \in \mathbb{R}^2 : \|x\| = 1\}.$

• Far-field $w^{\infty}(\hat{x})$ is defined on the unit circle \mathbb{S}^1 .

Problem setup (first introduced by Kirsch (1986) and Colton & Monk (1988))

- Take $v = u^i(x; \hat{d}, k) = e^{ikx \cdot \hat{d}}$ as incident plane wave with direction $\hat{d} \in \mathbb{S}^1$.
- Then, we have $w^{\infty}(\widehat{x}; \widehat{d}, k)$.
- Inverse problem: Given the wave number k > 0 and the far-field patterns $w^{\infty}(\widehat{x};\widehat{d},k)$ for all $\widehat{x},\widehat{d}\in\mathbb{S}^1$ determine the shape of the scattering obstacle D.
- Far-field operator

$$F_k[g](\widehat{x}) = \int_{\mathbb{S}^1} w^{\infty}(\widehat{x}; \widehat{d}, k) g(\widehat{d}) ds(\widehat{d}), \quad \widehat{x} \in \mathbb{S}^1$$

• Kirsch's factorization method: Is the far-field operator $F_k: L^2(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$ injective?

Problem setup (first introduced by Kirsch (1986) and Colton & Monk (1988))

- The far-field operator $F_k: L^2(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$ is injective and has dense range if and only if k > 0 is not a non-scattering wave number (NSWN).
- Interior transmission problem (ITP):

$$\Delta v + k^2 v = 0 \quad \text{in } D,$$

$$\Delta w + n k^2 w = 0 \quad \text{in } D,$$

$$v = w \quad \text{on } \partial D,$$

$$\partial_{\nu} v = \partial_{\nu} w \quad \text{on } \partial D.$$

• Given $n \in L^{\infty}(D)$, k > 0 is called (real) transmission eigenvalue (TE) if the ITP is solved for non-trivial $v, w \in L^2(D)$ such that $(v - w) \in H^2_0(D)$.

MOTIVATION

Problem setup

- Let $\mathcal N$ be the set of NSWNs and $\mathcal T$ be the set of TEs.
- Obviously, we have $\mathcal{N} \subseteq \mathcal{T}$.
- Many methods are available to numerically compute TEs and corresponding v in D such as
 - finite element method,
 - boundary integral equations,
 - inside-outside-duality method, and
 - modified method of fundamental solutions.
- If we can extend v from D to $\mathbb{R}^2 \setminus \overline{D}$, then a TE is also a NSWN.

MOTIVATION

What is known (the extreme cases)?

■ Unit disk. *n* = 4:

$$\mathcal{N} = \mathcal{T} = \{2.9026, 3.3842, 3.4121, 3.9765, \ldots\} \,.$$

With $\hat{k} \approx 3.3842$, the function

$$\mathbf{v}(\tilde{\mathbf{r}},\theta)=\mathbf{J}_0(\widehat{\mathbf{k}}\cdot\widetilde{\mathbf{r}})$$

used as an incident field does not produce a scattering field. w inside D is given by

$$w(\widetilde{r},\theta) = \frac{J_0(\widetilde{k})}{J_0(2\widehat{k})}J_0(2\widehat{k}\cdot\widetilde{r}).$$

■ Unit square, n = 4: $\mathcal{N} = \emptyset$ and

$$\mathcal{T} = \{5.4761, 6.1003, 6.1844, 6.6510, \ldots\}$$
.

MOTIVATION

What do we investigate?

- Can we construct a method to determine whether v can be extended to some $B_r(0) \supset \overline{D}$?
- If *v* cannot be extended, then TE *k* will not be a NSWN.
- Otherwise, *k* is a possible NSWN candidate.

THE PROCEDURE

The constrained minimization problem

$$\sigma_{N,\lambda,r} := \min_{v,w \in V_N(k) \times W_N(\sqrt{n}k)} \left\{ \|v - w\|_{H^{\frac{3}{2}}(\partial D)}^2 + \|\partial_{\nu}(v - w)\|_{H^{\frac{1}{2}}(\partial D)}^2 + \lambda \|v\|_{L^2(B_r(0)\setminus \overline{D})}^2 \right\}$$
s.t.
$$\|v - w\|_{H^{\frac{3}{2}}(\partial D)}^2 + \|\partial_{\nu}(v - w)\|_{H^{\frac{1}{2}}(\partial D)}^2 + \|v\|_{L^2(D)}^2 + \|w\|_{L^2(D)}^2 + \lambda \|v\|_{L^2(B_r(0)\setminus \overline{D})}^2 = 1,$$
(1)

- $\lambda > 0$ is a Tikhonov parameter to penalize blow-up behavior of ν in the exterior.
- k is a given TE of D.
- $V_N(k)$ and $W_N(\sqrt{nk})$ are N-dependent-dimensional subspaces of global Helmholtz solutions with wave numbers k and $\sqrt{n}k$, respectively.

THE PROCEDURE

The constrained minimization problem

We use Fourier-Bessel functions (FBF) (in polar coordinates (\tilde{r}, ϕ))

$$V_{N}(k) = \left\{ \alpha_{0} J_{0}(k\tilde{r}) + \sum_{p=1}^{N} J_{p}(k\tilde{r}) \left(\alpha_{p} \exp(ip\phi) + \beta_{p} \exp(-ip\phi) \right) \right\},$$

$$W_{N}(\sqrt{n}k) = \left\{ \gamma_{0} J_{0}(\sqrt{n}k\tilde{r}) + \sum_{p=1}^{N} J_{p}(\sqrt{n}k\tilde{r}) \left(\gamma_{p} \exp(ip\phi) + \delta_{p} \exp(-ip\phi) \right) \right\},$$
(2)

Andreas Kleefeld

They are entire solutions to the Helmholtz equations and additionally L^2 -biorthogonal on disks of arbitrary radii.

THE PROCEDURE

The constrained minimization problem

Theorem

Let D be a smooth domain that is star-shaped with respect to a ball, let k > 0 be some TE of D, $B_r(0) \supset \overline{D}$ for r > 0 and $(v_{N,\lambda,r}, w_{N,\lambda,r}) \in V_N(k) \times W_N(\sqrt{n}k)$ be the corresponding minimizer of (1) on $B_r(0)$ for $\lambda > 0$ and $N \in \mathbb{N}$ with minimum $\sigma_{N,\lambda,r}$. Then k is a NSWN if and only if

$$\lim_{\widetilde{\lambda} \to 0} \lim_{N \to \infty} \inf_{\lambda < \widetilde{\lambda}} \frac{\sigma_{N,\lambda,r}}{\lambda} < \infty$$

for all r > 0 such that $D \subset B_r(0)$.

If the numerical computation of $\frac{\sigma_{N,\lambda,r}}{\lambda}$ for large N, small λ , and large r, stays small, indicates a possible NSWN. Otherwise, we do not have a NSWN.

Andreas Kleefeld

The constrained minimization problem

- Let r > 0 such that $\overline{D} \subset B_r(0)$. We use the computational points:
 - boundary points $x_i \in \partial D$ for $1 < i < N_B$,
 - interior points $y_i \in D$ for $1 < i < N_I$,
 - exterior points $z_i \in B_r(0) \setminus \overline{D}$ for $1 \le i \le N_E$.
- Further, let $N \in \mathbb{N}$ (can be extended to $N \in \mathbb{N}/2$) such that $N \ll N_B, N_I, N_E$ and let

$$\{\phi_{j,k}\}_{1 \le j \le 2N+1} \subset V_N(k) ,$$

$$\{\psi_{j,\sqrt{n}k}\}_{1 \le j \le 2N+1} \subset W_N(\sqrt{n}k)$$

be the canonical basis of Fourier Bessel functions from (2) for some (numerically) exact TE k.

The constrained minimization problem

We set for $1 \le j \le 2N + 1$

$$(V_{N}(\partial D))_{i,j} = \phi_{j,k}(x_{i}) , 1 \leq i \leq N_{B} ,$$

$$(W_{N}(\partial D))_{i,j} = \psi_{j,\sqrt{n}k}(x_{i}) , 1 \leq i \leq N_{B} ,$$

$$(\partial_{\nu}V_{N}(\partial D))_{i,j} = \partial_{\nu}\phi_{j,k}(x_{i}) , 1 \leq i \leq N_{B} ,$$

$$(\partial_{\nu}W_{N}(\partial D))_{i,j} = \partial_{\nu}\psi_{j,\sqrt{n}k}(x_{i}) , 1 \leq i \leq N_{B} ,$$

$$(V_{N}(D))_{i,j} = \partial_{\nu}\phi_{j,k,N}(y_{i}) , 1 \leq i \leq N_{I} ,$$

$$(W_{N}(D))_{i,j} = \partial_{\nu}\psi_{j,\sqrt{n}k}(y_{i}) , 1 \leq i \leq N_{I} ,$$

$$(V_{N}(B_{r}(0)\backslash \overline{D}))_{i,j} = \partial_{\nu}\phi_{j,k}(z_{i}) , 1 \leq i \leq N_{E}$$

The constrained minimization problem

Construct block matrix

$$M_{FBF}(N,\lambda,r) := \begin{pmatrix} V_N(\partial D) & W_N(\partial D) \\ \partial_{\nu} V_N(\partial D) & \partial_{\nu} W_N(\partial D) \\ \lambda \cdot V_N(B_r(0) \backslash \overline{D}) & 0 \\ V_N(D) & 0 \\ 0 & W_N(D) \end{pmatrix} \in \mathbb{C}^{N_{tot} \times (4N+2)} .$$
 (3)

with $N_{tot} := 2N_B + N_E + 2N_I$ and $\lambda > 0$.

QR decomposition

$$M_{FBF}(N, \lambda, r) = Q(N, \lambda, r)R(N, \lambda, r) = \begin{pmatrix} Q_B(N, \lambda, r) \\ Q_E(N, \lambda, r) \\ Q_I(N, \lambda, r) \end{pmatrix} R(N, \lambda, r).$$

The constrained minimization problem

Set

$$Q_{B,E}(N,\lambda,r) = \begin{pmatrix} Q_B(N,\lambda,r) \\ Q_E(N,\lambda,r) \end{pmatrix}$$
,

Numerical solution to (1) becomes

$$\min_{\substack{q \in \mathbb{C}^{4N+2}, \\ \|q\|=1}} \|Q_{B,E}(N,\lambda,r)q\| = s_{\min}(N,\lambda,r), \qquad (4)$$

where $s_{min}(N, \lambda, r)$ denotes the minimal singular value of $Q_{B,E}(N, \lambda, r)$

• It represents the discrete equivalent of $\sigma_{N,\lambda,r}$.

The unit disk, n = 4, $k \approx 2.9026$, r = 5

We see in the $\lambda \mapsto (s_{\min}(N, \lambda, 5)/\lambda)$ -plots that for each fixed $\lambda > 0$ the corresponding point on the graph approaches a reasonably small value as N grows. We know that all TEs are NSWN, hence $k \approx 2.9026$ is a NSWN. Our numerical method confirms this.

The ellipse with half-axis 1 and 0.8, n = 4, $k \approx 3.4852$, r = 5

We see in the $\lambda \mapsto (s_{\min}(N, \lambda, 5)/\lambda)$ -plots that for each fixed $\lambda > 0$ the corresponding point on the graph approaches a reasonably small value as N grows for decreasing λ . According to Theorem 1, we expect $k \approx 3.4852$ to be a NSWN.

The ellipse with half-axis 1 and 0.5, n = 4, $k \approx 5.4092$, r = 5

We see in the $\lambda \mapsto (s_{min}(N, \lambda, 5)/\lambda)$ -plots that for any $\lambda < 10^{-4}$ the corresponding point on the graph increases independent of the growing N. According to Theorem 1, we expect $k \approx 5.4092$ to be a pure TE.

The unit square, n = 4, $k \approx 6.1003$, r = 5

We see in the $\lambda \mapsto (s_{\min}(N,\lambda,5)/\lambda)$ -plots that for any $\lambda < 10^{-4}$ the corresponding point on the graph increases independent of the growing N. According to Theorem 1, we expect $k \approx 6.1003$ to be a pure TE. We know that there is no NSWN.

The ellipse using Mathieu functions

- Consider separation of variables using elliptic coordinates.
- Leads to radial and angular Mathieu functions (there are four different ones).
- ITP leads to the computation of a determinant of a matrix of infinite size containing expressions involving such Mathieu functions.

The 0.8-ellipse using Mathieu functions

Claim: All TEs are NSWNs. The eigenfunctions can be analytically extended far away from the boundary.

The 0.5-ellipse using Mathieu functions

Claim: All TEs are not NSWNs. The eigenfunctions can be analytically extended close to the boundary but not far away.

SUMMARY

- Presented a numerical method to analytically extend the eigenfunction v corresponding to a TE locally.
- Numerical and theoretical results are in agreement with the disk and the unit square.
- Numerical results for the ellipse are the same when using Mathieu-functions directly.
- Theorem 1 gives us numerical tendency to say whether a TE is a NSWN or not.
- Might give insight whether we really have $\emptyset \neq \mathcal{N} \subset \mathcal{T}$ for other domains.

OUTLOOK

- However, the stability of our method is only valid for disc-like domains as for other domains the FBF-biorthogonality is lost.
- Hence, due to an increase of the condition number of $M_{FBF}(N, \lambda, r)$ the quantity $s_{min}(N, \lambda, r)/\lambda$ is prone to errors and due to large N.
- Try to use a domain-dependent ansatz instead (ML) to improve condition number.

- Further investigate whether there is critical half-axis for an ellipse such that we have the extreme cases (unit disk vs. unit square). We claim there is!
- Looking forward to your ideas, comments, and inspiring conversations.

REFERENCES

- ANDREAS KLEEFELD & LUKAS PIERONEK, The method of fundamental solutions for computing acoustic interior transmission eigenvalues, Inverse Problems, 34(3), 035007 (2018).
- LUKAS PIERONEK & ANDREAS KLEEFELD, A numerical study of non-scattering wave numbers, in preparation.

E-mail addresses:

a.kleefeld@fz-juelich.de

pieronek.lukas@gmail.com

