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INTRODUCTION
Problem setup

Incident field v satisfies

∆v + k2v = 0 in R2 .

Total field u = w + v satisfies

∆u + k2nu = 0 in R2 .

Scattered field w satisfies the
Sommerfeld radiation condition.
k > 0 is the wave number.
n (constant) is the index of
refraction.
D is simply-connected and
star-shaped.
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INTRODUCTION
Problem setup

Scattered field satisfies

w(x) =
eiπ/4
√

8πk
eik‖x‖√
‖x‖

w∞(x̂) +O
(
‖x‖−3/2) , ‖x‖ → ∞

uniformly with respect to x̂ = x/‖x‖ ∈ S1 = {x ∈ R2 : ‖x‖ = 1}.
Far-field w∞(x̂) is defined on the unit circle S1.
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INTRODUCTION
Problem setup (first introduced by Kirsch (1986) and Colton & Monk (1988))

Take v = u i(x ; d̂ , k) = eikx ·d̂ as incident plane wave with direction d̂ ∈ S1.

Then, we have w∞(x̂ ; d̂ , k).
Inverse problem: Given the wave number k > 0 and the far-field patterns
w∞(x̂ ; d̂ , k) for all x̂ , d̂ ∈ S1 determine the shape of the scattering obstacle D.
Far-field operator

Fk [g](x̂) =

∫
S1

w∞(x̂ ; d̂ , k)g(d̂) ds(d̂) , x̂ ∈ S1

Kirsch’s factorization method: Is the far-field operator Fk : L2(S1)→ L2(S1)
injective?
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INTRODUCTION
Problem setup (first introduced by Kirsch (1986) and Colton & Monk (1988))

The far-field operator Fk : L2(S1)→ L2(S1) is injective and has dense range if
and only if k > 0 is not a non-scattering wave number (NSWN).
Interior transmission problem (ITP):

∆v + k2v = 0 in D ,

∆w + nk2w = 0 in D ,

v = w on ∂D ,

∂νv = ∂νw on ∂D .

Given n ∈ L∞(D), k > 0 is called (real) transmission eigenvalue (TE) if the
ITP is solved for non-trivial v ,w ∈ L2(D) such that (v − w) ∈ H2

0 (D).
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MOTIVATION
Problem setup

Let N be the set of NSWNs and T be the set of TEs.
Obviously, we have N ⊆ T .
Many methods are available to numerically compute TEs and corresponding
v in D such as

finite element method,
boundary integral equations,
inside-outside-duality method, and
modified method of fundamental solutions.

If we can extend v from D to R2\D, then a TE is also a NSWN.
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MOTIVATION
What is known (the extreme cases)?

Unit disk, n = 4:

N = T = {2.9026,3.3842,3.4121,3.9765, . . .} .

With k̂ ≈ 3.3842, the function

v(r̃ , θ) = J0(k̂ · r̃)

used as an incident field does not produce a scattering field. w inside D is
given by

w(r̃ , θ) =
J0(k̂)

J0(2k̂)
J0(2k̂ · r̃) .

Unit square, n = 4: N = ∅ and

T = {5.4761,6.1003,6.1844,6.6510, . . .} .
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MOTIVATION
What do we investigate?

Can we construct a method to determine whether v can be extended to some
Br (0) ⊃ D?
If v cannot be extended, then TE k will not be a NSWN.
Otherwise, k is a possible NSWN candidate.
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THE PROCEDURE
The constrained minimization problem

σN,λ,r := min
v ,w∈VN(k)×WN(

√
nk)

{
‖v − w‖2

H
3
2 (∂D)

+ ‖∂ν(v − w)‖2

H
1
2 (∂D)

+ λ‖v‖2
L2(Br (0)\D)

}
s.t.

‖v − w‖2

H
3
2 (∂D)

+ ‖∂ν(v − w)‖2

H
1
2 (∂D)

+ ‖v‖2
L2(D) + ‖w‖2

L2(D) + λ‖v‖2
L2(Br (0)\D)

= 1 ,

(1)

λ > 0 is a Tikhonov parameter to penalize blow-up behavior of v in the
exterior.
k is a given TE of D.
VN(k) and WN(

√
nk) are N-dependent-dimensional subspaces of global

Helmholtz solutions with wave numbers k and
√

nk , respectively.
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THE PROCEDURE
The constrained minimization problem

We use Fourier-Bessel functions (FBF) (in polar coordinates (r̃ , φ))

VN(k) =

α0J0(k r̃) +
N∑

p=1

Jp(k r̃)
(
αp exp(ipφ) + βp exp(−ipφ)

) ,

WN(
√

nk) =

γ0J0(
√

nkr̃) +
N∑

p=1

Jp(
√

nkr̃)
(
γp exp(ipφ) + δp exp(−ipφ)

) ,

(2)

They are entire solutions to the Helmholtz equations and additionally
L2-biorthogonal on disks of arbitrary radii.
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THE PROCEDURE
The constrained minimization problem

Theorem
Let D be a smooth domain that is star-shaped with respect to a ball, let k > 0 be
some TE of D, Br (0) ⊃ D for r > 0 and (vN,λ,r ,wN,λ,r ) ∈ VN(k)×WN(

√
nk) be the

corresponding minimizer of (1) on Br (0) for λ > 0 and N ∈ N with minimum σN,λ,r .
Then k is a NSWN if and only if

lim
λ̃→0

lim
N→∞

inf
λ<λ̃

σN,λ,r

λ
<∞

for all r > 0 such that D ⊂ Br (0).

If the numerical computation of σN,λ,r
λ

for large N, small λ, and large r , stays small,
indicates a possible NSWN. Otherwise, we do not have a NSWN.
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NUMERICAL IMPLEMENTATION
The constrained minimization problem

Let r > 0 such that D ⊂ Br (0). We use the computational points:
boundary points xi ∈ ∂D for 1 ≤ i ≤ NB,
interior points yi ∈ D for 1 ≤ i ≤ NI ,
exterior points zi ∈ Br (0)\D for 1 ≤ i ≤ NE .

Further, let N ∈ N (can be extended to N ∈ N/2) such that N � NB,NI ,NE

and let

{φj,k}1≤j≤2N+1 ⊂ VN(k) ,

{ψj,
√

nk}1≤j≤2N+1 ⊂WN(
√

nk)

be the canonical basis of Fourier Bessel functions from (2) for some
(numerically) exact TE k .
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NUMERICAL IMPLEMENTATION
The constrained minimization problem

We set for 1 ≤ j ≤ 2N + 1

(VN(∂D))i,j = φj,k (xi) , 1 ≤ i ≤ NB ,

(WN(∂D))i,j = ψj,
√

nk (xi) , 1 ≤ i ≤ NB ,

(∂νVN(∂D))i,j = ∂νφj,k (xi) , 1 ≤ i ≤ NB ,

(∂νWN(∂D))i,j = ∂νψj,
√

nk (xi) , 1 ≤ i ≤ NB ,

(VN(D))i,j = ∂νφj,k ,N(yi) , 1 ≤ i ≤ NI ,

(WN(D))i,j = ∂νψj,
√

nk (yi) , 1 ≤ i ≤ NI ,(
VN(Br (0)\D)

)
i,j

= ∂νφj,k (zi) , 1 ≤ i ≤ NE
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NUMERICAL IMPLEMENTATION
The constrained minimization problem

Construct block matrix

MFBF (N, λ, r) :=


VN(∂D) WN(∂D)
∂νVN(∂D) ∂νWN(∂D)

λ · VN(Br (0)\D) 0
VN(D) 0

0 WN(D)

 ∈ CNtot×(4N+2) . (3)

with Ntot := 2NB + NE + 2NI and λ > 0.
QR decomposition

MFBF (N, λ, r) = Q(N, λ, r)R(N, λ, r) =

QB(N, λ, r)
QE (N, λ, r)
QI(N, λ, r)

R(N, λ, r) .
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NUMERICAL IMPLEMENTATION
The constrained minimization problem

Set

QB,E (N, λ, r) =

(
QB(N, λ, r)
QE (N, λ, r)

)
,

Numerical solution to (1) becomes

min
q∈C4N+2,
‖q‖=1

‖QB,E (N, λ, r)q‖ = smin(N, λ, r) , (4)

where smin(N, λ, r) denotes the minimal singular value of QB,E (N, λ, r)

It represents the discrete equivalent of σN,λ,r .
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NUMERICAL RESULTS
The unit disk, n = 4, k ≈ 2.9026, r = 5
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We see in the λ 7→ (smin(N, λ,5)/λ)-plots that for each fixed λ > 0 the
corresponding point on the graph approaches a reasonably small value as N
grows. We know that all TEs are NSWN, hence k ≈ 2.9026 is a NSWN. Our
numerical method confirms this.
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NUMERICAL RESULTS
The ellipse with half-axis 1 and 0.8, n = 4, k ≈ 3.4852, r = 5
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We see in the λ 7→ (smin(N, λ,5)/λ)-plots that for each fixed λ > 0 the
corresponding point on the graph approaches a reasonably small value as N
grows for decreasing λ. According to Theorem 1, we expect k ≈ 3.4852 to be a
NSWN.
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NUMERICAL RESULTS
The ellipse with half-axis 1 and 0.5, n = 4, k ≈ 5.4092, r = 5
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We see in the λ 7→ (smin(N, λ, 5)/λ)-plots that for any λ < 10−4 the corresponding
point on the graph increases independent of the growing N. According to
Theorem 1, we expect k ≈ 5.4092 to be a pure TE.
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NUMERICAL RESULTS
The unit square, n = 4, k ≈ 6.1003, r = 5
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We see in the λ 7→ (smin(N, λ, 5)/λ)-plots that for any λ < 10−4 the corresponding
point on the graph increases independent of the growing N. According to Theorem
1, we expect k ≈ 6.1003 to be a pure TE. We know that there is no NSWN.
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NUMERICAL RESULTS
The ellipse using Mathieu functions

Consider separation of variables using elliptic coordinates.
Leads to radial and angular Mathieu functions (there are four different ones).
ITP leads to the computation of a determinant of a matrix of infinite size
containing expressions involving such Mathieu functions.
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NUMERICAL RESULTS
The 0.8-ellipse using Mathieu functions
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Claim: All TEs are NSWNs. The eigenfunctions can be analytically extended far
away from the boundary.
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NUMERICAL RESULTS
The 0.5-ellipse using Mathieu functions
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Claim: All TEs are not NSWNs. The eigenfunctions can be analytically extended
close to the boundary but not far away.
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SUMMARY

Presented a numerical method to analytically extend the eigenfunction v
corresponding to a TE locally.
Numerical and theoretical results are in agreement with the disk and the unit
square.
Numerical results for the ellipse are the same when using Mathieu-functions
directly.
Theorem 1 gives us numerical tendency to say whether a TE is a NSWN or
not.
Might give insight whether we really have ∅ 6= N ⊂ T for other domains.
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OUTLOOK

However, the stability of our method is only valid for disc-like domains as for
other domains the FBF-biorthogonality is lost.
Hence, due to an increase of the condition number of MFBF (N, λ, r) the
quantity smin(N, λ, r)/λ is prone to errors and due to large N.
Try to use a domain-dependent ansatz instead (ML) to improve condition
number.

Further investigate whether there is critical half-axis for an ellipse such that
we have the extreme cases (unit disk vs. unit square). We claim there is!

Looking forward to your ideas, comments, and inspiring conversations.
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