001040323 001__ 1040323
001040323 005__ 20250310131240.0
001040323 0247_ $$2doi$$a10.1088/2058-9565/ad9be2
001040323 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01837
001040323 0247_ $$2WOS$$aWOS:001388382800001
001040323 037__ $$aFZJ-2025-01837
001040323 041__ $$aEnglish
001040323 082__ $$a530
001040323 1001_ $$0P:(DE-HGF)0$$aMüller, Thorge$$b0$$eCorresponding author
001040323 245__ $$aCoherent and non-unitary errors in ZZ-generated gates
001040323 260__ $$aPhiladelphia, PA$$bIOP Publishing$$c2025
001040323 3367_ $$2DRIVER$$aarticle
001040323 3367_ $$2DataCite$$aOutput Types/Journal article
001040323 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740733949_9465
001040323 3367_ $$2BibTeX$$aARTICLE
001040323 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040323 3367_ $$00$$2EndNote$$aJournal Article
001040323 520__ $$aVariational algorithms such as the quantum approximate optimization algorithm have attracted attention due to their potential for solving problems using near-term quantum computers. The ZZ interaction typically generates the primitive two-qubit gate in such algorithms applied for a time, typically a variational parameter, γ. Different compilation techniques exist with respect to the implementation of two-qubit gates. Due to the importance of the ZZ-gate, we present an error analysis comparing the continuous-angle controlled phase gate (CP) against the fixed angle controlled Z-gate (CZ). We analyze both techniques under the influence of coherent over-rotation and depolarizing noise. We show that CP and CZ compilation techniques achieve comparable ZZ-gate fidelities if the incoherent error is below 0.03% and the coherent error is below 0.8%. Thus, we argue that for small coherent and incoherent error a non-parameterized two-qubit gate such as CZ in combination with virtual Z decomposition for single-qubit gates could lead to a significant reduction in the calibration required and, therefore, a less error-prone quantum device. We show that above a coherent error of 0.04π (2%), the CZ gate fidelity depends significantly on γ.
001040323 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid (BMBF-13N16149)$$cBMBF-13N16149$$x0
001040323 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x1
001040323 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040323 7001_ $$0P:(DE-Juel1)194697$$aStollenwerk, Tobias$$b1
001040323 7001_ $$0P:(DE-HGF)0$$aHeadley, David$$b2
001040323 7001_ $$0P:(DE-HGF)0$$aEpping, Michael$$b3
001040323 7001_ $$0P:(DE-Juel1)184630$$aWilhelm, Frank K$$b4
001040323 773__ $$0PERI:(DE-600)2906136-2$$a10.1088/2058-9565/ad9be2$$gVol. 10, no. 1, p. 015058 -$$n1$$p015058 -$$tQuantum science and technology$$v10$$x2058-9565$$y2025
001040323 8564_ $$uhttps://juser.fz-juelich.de/record/1040323/files/M%C3%BCller_2025_Quantum_Sci._Technol._10_015058.pdf$$yOpenAccess
001040323 909CO $$ooai:juser.fz-juelich.de:1040323$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001040323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194697$$aForschungszentrum Jülich$$b1$$kFZJ
001040323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b4$$kFZJ
001040323 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001040323 9141_ $$y2025
001040323 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-03
001040323 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-03
001040323 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040323 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-03
001040323 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-03
001040323 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-03
001040323 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040323 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-03
001040323 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-03
001040323 920__ $$lyes
001040323 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001040323 980__ $$ajournal
001040323 980__ $$aVDB
001040323 980__ $$aI:(DE-Juel1)PGI-12-20200716
001040323 980__ $$aUNRESTRICTED
001040323 9801_ $$aFullTexts