001 | 1040323 | ||
005 | 20250310131240.0 | ||
024 | 7 | _ | |a 10.1088/2058-9565/ad9be2 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-01837 |2 datacite_doi |
024 | 7 | _ | |a WOS:001388382800001 |2 WOS |
037 | _ | _ | |a FZJ-2025-01837 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Müller, Thorge |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Coherent and non-unitary errors in ZZ-generated gates |
260 | _ | _ | |a Philadelphia, PA |c 2025 |b IOP Publishing |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1740733949_9465 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Variational algorithms such as the quantum approximate optimization algorithm have attracted attention due to their potential for solving problems using near-term quantum computers. The ZZ interaction typically generates the primitive two-qubit gate in such algorithms applied for a time, typically a variational parameter, γ. Different compilation techniques exist with respect to the implementation of two-qubit gates. Due to the importance of the ZZ-gate, we present an error analysis comparing the continuous-angle controlled phase gate (CP) against the fixed angle controlled Z-gate (CZ). We analyze both techniques under the influence of coherent over-rotation and depolarizing noise. We show that CP and CZ compilation techniques achieve comparable ZZ-gate fidelities if the incoherent error is below 0.03% and the coherent error is below 0.8%. Thus, we argue that for small coherent and incoherent error a non-parameterized two-qubit gate such as CZ in combination with virtual Z decomposition for single-qubit gates could lead to a significant reduction in the calibration required and, therefore, a less error-prone quantum device. We show that above a coherent error of 0.04π (2%), the CZ gate fidelity depends significantly on γ. |
536 | _ | _ | |a BMBF 13N16149 - QSolid (BMBF-13N16149) |0 G:(DE-Juel1)BMBF-13N16149 |c BMBF-13N16149 |x 0 |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Stollenwerk, Tobias |0 P:(DE-Juel1)194697 |b 1 |
700 | 1 | _ | |a Headley, David |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Epping, Michael |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Wilhelm, Frank K |0 P:(DE-Juel1)184630 |b 4 |
773 | _ | _ | |a 10.1088/2058-9565/ad9be2 |g Vol. 10, no. 1, p. 015058 - |0 PERI:(DE-600)2906136-2 |n 1 |p 015058 - |t Quantum science and technology |v 10 |y 2025 |x 2058-9565 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1040323/files/M%C3%BCller_2025_Quantum_Sci._Technol._10_015058.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1040323 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)194697 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)184630 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-03 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-12-20200716 |k PGI-12 |l Quantum Computing Analytics |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-12-20200716 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|