001040330 001__ 1040330
001040330 005__ 20250414202156.0
001040330 0247_ $$2doi$$a10.1039/D4CP04477K
001040330 0247_ $$2ISSN$$a1463-9076
001040330 0247_ $$2ISSN$$a1463-9084
001040330 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01843
001040330 0247_ $$2pmid$$a39946123
001040330 0247_ $$2WOS$$aWOS:001419712200001
001040330 037__ $$aFZJ-2025-01843
001040330 041__ $$aEnglish
001040330 082__ $$a540
001040330 1001_ $$0P:(DE-Juel1)201210$$aRudani, Binny A.$$b0
001040330 245__ $$aAnalyzing the concentration-dependent Soret coefficient minimum in salt solutions: an overview
001040330 260__ $$aCambridge$$bRSC Publ.$$c2025
001040330 3367_ $$2DRIVER$$aarticle
001040330 3367_ $$2DataCite$$aOutput Types/Journal article
001040330 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1741074789_18524
001040330 3367_ $$2BibTeX$$aARTICLE
001040330 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040330 3367_ $$00$$2EndNote$$aJournal Article
001040330 520__ $$aTemperature gradients often cause the separation of the components in liquid mixtures by a process called thermodiffusion and quantified by the Soret coefficient. In recent years, the existence of minima in the Soret coefficient as a function of concentration has been investigated by experiments and simulations for various aqueous salt solutions. In this paper, we analyze the data of ten 1 : 1 electrolytes (lithium, sodium and potassium chloride, lithium, sodium and potassium iodide, potassium acetate, sodium and potassium thiocyanate and guanidinium chloride) in water, together with those of newly measured Soret coefficients for aqueous cesium iodide solutions. The latter were measured in the temperature range between 15 °C and 45 °C and concentrations between 0.5 and 3 moles per kg of the solvent using thermal diffusion forced Rayleigh scattering. We analyze the data by expressing the Soret coefficients as products of two factors, one purely thermodynamic factor and one being the ratio of two Onsager coefficients. It turns out that the ratio of Onsager coefficients is the main factor responsible for the non-monotonic behavior of the Soret coefficients, contrary to recent findings using computer simulations of binary Lennard-Jones mixtures. Moreover, for salts with the same anion, we find that the thermodynamic factors increase with increasing Pauling radii of the cations, while the Onsager ratios increase monotonically with the radii of the hydrated cations.
001040330 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001040330 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040330 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b1$$eCorresponding author$$ufzj
001040330 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b2$$eCorresponding author
001040330 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D4CP04477K$$gp. 10.1039.D4CP04477K$$n9$$p4746-4755$$tPhysical chemistry, chemical physics$$v27$$x1463-9076$$y2025
001040330 8564_ $$uhttps://juser.fz-juelich.de/record/1040330/files/d4cp04477k.pdf$$yOpenAccess
001040330 8767_ $$d2025-04-14$$eHybrid-OA$$jPublish and Read
001040330 909CO $$ooai:juser.fz-juelich.de:1040330$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery
001040330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201210$$aForschungszentrum Jülich$$b0$$kFZJ
001040330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich$$b1$$kFZJ
001040330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b2$$kFZJ
001040330 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001040330 9141_ $$y2025
001040330 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001040330 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001040330 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001040330 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001040330 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001040330 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001040330 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001040330 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040330 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001040330 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001040330 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001040330 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001040330 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001040330 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001040330 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001040330 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001040330 920__ $$lyes
001040330 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001040330 9801_ $$aFullTexts
001040330 980__ $$ajournal
001040330 980__ $$aVDB
001040330 980__ $$aUNRESTRICTED
001040330 980__ $$aI:(DE-Juel1)IBI-4-20200312
001040330 980__ $$aAPC