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To improve the theoretical understanding of multiquark states like Z,(10610) and Z,(10650), we
calculate the heavy-meson heavy-(anti)meson scattering potential up to next-to-leading order, O(Q?),
within chiral effective field theory (yEFT) employing a power counting scheme that explicitly keeps track

with the large momentum scale Q ~ \/2ué (where § = my, — mp is the vector-pseudoscalar mass difference
and u their reduced mass) introduced by the coupled channel dynamics. We provide expressions for the

two-pion exchange (TPE) terms up to O(Q?) and their partial-wave decomposition. We show that these

potentials are well approximated by contact terms at O(Q?), with minor residual nonanalytic TPE
contributions, supporting yEFT convergence in the theoretical predictions for Z,(10610) and Z,(10650),

as well as their spin partners. These findings are also relevant for D) D) scattering, especially for the T,
state, for both physical and lattice quantum chromodynamics (QCD) data with moderately larger pion
masses. We further demonstrate that the differences between isovector and isoscalar potentials for heavy
mesons are naturally explained by the TPE contributions.

DOI: 10.1103/PhysRevD.111.034042

I. INTRODUCTION

Understanding exotic hadrons within quantum chromo-
dynamics (QCD) holds the promise for deeper insights
into the strong force. In addition to the well-established
quark model states, that describe mesons as quark-
antiquark and baryons as three-quark systems, exotic
hadrons encompass a large variety of states, including
multiquark configurations, glueballs, hybrids, etc., as doc-
umented in a large number of review articles [1-10]. Exotic
mesons with heavy quarks, often denoted as XYZ states,
challenge the predictions of the conventional quark model,
giving rise to intriguing questions about their internal
structure. Some of these states are manifestly exotic—
notable examples include the charged states of the Z family,
namely, ZF(10610), Z;(10650) [11], Z(3900) [12,13],
Z£(4020) [14], Z£(4430) [15-18], which decay into final
states containing a heavy quarkonium accompanied by a
single light hadron.
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The states Z,(10610) and Z,(10650) discovered by the
Belle Collaboration [19], commonly denoted as Z, and
Z, for brevity, provide an excellent playground for
gaining deeper insights into exotic states. Both have
JPC = 17~ [19] and manifest themselves as two narrow
peaks, separated by approximately 45 MeV, in the
invariant mass distributions of the z=Y(nS) (n =1, 2,
3) and 7Fh,(mP) (m = 1, 2) subsystems in the dipion
transitions from the vector bottomonium Y(10860) [11]
(hereafter referred to as inelastic channels). Moreover,
these states have been observed in the BB*' and B*B*
invariant mass distributions (hereafter referred to as
elastic channels) in the decays Y(10860) — 7B B* with
dominant branching fractions [20,21]. The proximity of
Z,(10610) and Z,(10650) to the BB* and B*B* thresh-
olds, respectively, along with the predominance of the
open-flavor branching fractions, strongly support their
molecular interpretation [22]. However, despite this
observation, the two primary explanations for the Z,
states, consistent with the data, are a tetraquark model and
a hadronic molecule picture, see, e.g., Refs. [2-4,7,23]
for review articles and references therein.

lH_ere, a properly normalized C-odd combination of the BB*
and BB* components is understood.
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Understanding the nature of near-threshold exotic states
hinges on accurately extracting their properties from data,
typically found in the pole position and residue of the
elastic scattering amplitude or probed using low-energy
hadronic parameters like scattering length and effective
range. Then, Weinberg’s compositeness criterion can be
employed to assess their internal structure. This criterion
establishes a relationship between the pole position and
residue of a state and the molecular component within its
complete wave function. Although originally formulated
for shallow bound states [24-26], it was recently extended
to virtual states and resonances [26-37], provided their
constituents are narrow [38]. Since the states of interest are
located very close to the production thresholds of particle
pairs to which they couple strongly, systematic theoretical
analyses, respecting analyticity and unitarity principles, are
compulsory. Especially, simplistic Breit-Wigner parameter-
izations are to be avoided for the parameters extracted in
this way are reaction dependent. An effective field theory
(EFT) approach serves as a suitable framework for this
purpose, offering model independence in the relevant
energy range. Furthermore, it enables the formulation of
testable predictions for various observables, facilitating the
observation of potential molecular candidates and their
heavy-quark (HQ) partner states.

Recently, a chiral EFT-based approach was formulated to
address experimental data for all measured production and
decay channels of the bottomoniumlike states Z,(10610)
and Z,(10650) [39,40]. The EFT approach is constructed
based on an effective Lagrangian that respects both chiral and
heavy-quark spin symmetry (HQSS) of QCD. The essential
aspects of this approach can be summarized as follows:

(i) The coupled-channel hadron-hadron EFT is formu-
lated using the Weinberg counting [41], initially
designed for treating few-nucleon systems. Further-
more, it was demonstrated in [42] that at least in
channels where the pion tensor force is operative, a
nonperturbative treatment of the one-pion exchange
is necessary—for a modern discussion on the subject
see Ref. [43]. The potential is built to a specific order
in the chiral expansion Q/ A, with the hard scale of
the chiral EFT being represented by A, ~ 1 GeV,
and then nonperturbatively resummed through Lipp-
mann-Schwinger type equations.

(ii) Simultaneously with the chiral expansion, the po-
tential undergoes an expansion around the spin
symmetry limit. At the leading order, this involves
incorporating the mass difference of the spin part-
ners B-B* along with all interaction vertices con-
structed in accordance with HQSS. In the loops at
next-to-leading order the B-B* mass difference can
be dropped.

(iii) The binding momenta, pion mass, and the momen-
tum scale resulting from the splitting between
open-flavor partner thresholds BB*) and B*B* are

(iv)

)
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considered as soft scales of the system, collectively
denoted as Q. The explicit inclusion of the coupled-
channel scale extends the energy range, where the
theory is applicable. This is crucial for analyzing
experimental data around the two elastic thresholds
and in between. Note that for energies near the B* B*
threshold, the on-shell relative momentum in the BB*
channel can be as large as py, = \/mpé ~ 500 MeV,
where 6 = mp- — mp, with mp- and mp being the B*
and B meson mass, respectively. The expansion
parameter can be therefore as large as

Z:Q/A)(Nptyp/[\;(zl/z‘ (1)

Thus the convergence of the chiral expansion needs to
be investigated.

The elastic coupled-channel effective potential V
constructed in chiral EFT up to O(Q?) reads

Verr = Vg)le + Vﬁglt + Vg)lziE
2 2
FVEL VRO, ()

The potential at leading order (LO) includes two
momentum-independent, O(Q°), contact inter-
actions, consistent with HQSS, while its long-ranged
component is attributed to the pseudoscalar Gold-
stone boson exchange represented here by the one-
pion (OPE) and the one-#-meson (OEE) exchanges.
Note that the Goldstone-boson exchange potential
is well defined in the sense of an EFT only in
combination with the pertinent contact operators
[44]. To tame the strong regulator dependence
arising from higher-momentum OPE contributions,
especially when multiple open-flavor coupled chan-
nels are considered, a formally O(Q?) S-wave-to-D-
wave counterterm is promoted to leading order, as
detailed in [39,40]. At next-to-leading order (NLO),
two momentum-dependent O(Q?) S-wave-to-S-
wave contact terms appear. The intermediate range
contributions are represented by the two-pion ex-
changes (TPE). However, the current calculations
[39,40] have, until now, omitted the contribution
from TPE. In this work we provide the potentials
that are necessary to overcome this shortcoming.
The potential incorporates the contributions of in-
elastic channels by enabling their coupling to the
S-wave open-flavor thresholds. This inclusion re-
sults in effective elastic open-flavor potentials with
imaginary components driven by unitarity. Mean-
while, the contributions to the real parts of the elastic
potentials from inelastic channels can be absorbed
through a redefinition of the momentum-independent
O(Q") contact interactions [40,45].
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(vi) All low-energy constants, including the two elastic
couplings, effective couplings to inelastic channels,
and the S-S and S-D contact interactions, are
determined through a combined fit to all available
experimental line shapes.

(vii) The leading contribution to the production operator
typically comes from the open-flavor channels,
unless notable structures in line shapes, like a dip
near the threshold, suggest otherwise. If a dip is
present, production might occur through more dis-
tant inelastic channels, as discussed in [46], see also
[47] for a recent application to the X (3872). Another
possibility in this case is the existence of a Castil-
lejo-Dalitz-Dyson (CDD) zero near the threshold,
challenging the effective range expansion of the
scattering amplitude [30,48,49]. For insights into the
impact of triangle singularities on near-threshold
line shapes, we refer to the review article [8].
However, none of these structures play a role in
production of Z,, states from the decay of Y(10860).

(viii) Tobeable to analyse data in the final states involving a
quarkonium and two pions, namely the transitions
T(10860) — zzh;,(mP)and Y (10860) — 77X (nS)
(n = 1,2,3), the zx final state interaction (FSI) in an
S-wave including its coupling to the KK channel has
to be taken into account. This was achieved by
employing dispersion theory in Refs. [50,51].

The EFT approach formulated above has been employed
to analyze all available data from the decay of Y(10860).
Utilizing data on the decays of Y(10860) — z*h,(mP)
(m=1,2) and Y(10860) — zB*)B* to fix unknown
low-energy constants from the best y* fits, the approach
revealed a very good understanding of these line shapes and
resulted in the extraction of the pole positions and residues
of the Z, states [39,40]. Based on these results, the line
shapes for the HQSS partner states of the Z,’s, namely the
positive P- and C-parity states W,"(J =0,1,2) were
predicted parameter free in the radiative decays Y (10860) —
yBYB®™), Y (10860) — yxy,,,(mP)(m = 1,2;J =0, 1,2),
and Y(10860) — yzan,(nS)(n = 1,2) [40]. Furthermore, a
version of the EFT amplitudes corresponding to a contact fit
from Refs. [39,40], augmented with the zz/KK FSI, was
used to show consistency with the two-dimensional Dalitz
plots for the Y(10860) - ztz~Y(nS) (n=1, 2, 3),
revealing the importance of these FSI effects especially for
T(1S) and Y(2S) final bottomonium states. On the other
hand, zz/KK FSI in the process T (10860) — z<h;,(mP)
(m=1,2) was shown to be strongly suppressed by
HQSS [51].

The effect of the OPE on the results of Refs. [39,40] can be
formulated as follows. First, we stress once again that the
OPE potential is well defined in the sense of an EFT only in
connection with contact operators, which implies that the
true effect of the OPE on observables can only be seen after
the potential is renormalized. Second, the effect from the

OPE depends on isospin and C-parity [52]. At large distances
the OPE contribution to the Z,’s (isovector B*) B* scattering
with C = —1) is repulsive, and the OPE cannot go on shell
since the decay B* — Br is not possible at physical pion
masses. Without the OPE, the Z,(10610) and Z,(10650)
were found to be virtual states with respect to the nearby BB*
and B*B* thresholds, respectively [39,40]. However, the
nontrivial interplay of the repulsive OPE and attractive
contact potentials resulted in shifting poles into the complex
plane, rendering them resonance states located just below the
corresponding thresholds. The same pattern was also
observed for their predicted HQSS partners that in some
channels can even move above threshold. This picture is
entirely consistent with recent findings for DD* scattering at
unphysically large pion masses in Ref. [53], where it was
shown that the inclusion of the repulsive OPE in the analysis
of lattice finite-volume spectra from Ref. [54] shifts the T,
pole to the complex plane (see also Refs. [55,56] for related
studies). As aresult, the repulsion generated by the OPE has a
pronounced effect on the 7. pole trajectory as a function of
the pion mass, by pushing it into the complex energy plane for
m, > 230 MeV [57].

In this work, we provide the contributions to the B*) B*)
potential that are so far missing in the analysis to NLO. Those
comprise two-pion exchange contributions to one loop. The
inclusion of these contributions is necessary to test the
convergence of the chiral EFT formalism (which is especially
important given the rather large expansion parameter
¥ ~ 1/2), provide a systematic uncertainty estimate of the
theoretical results, and finally extract the pole positions
reliably. Itis worth noting that we are aiming at the calculation
of the TPE terms in the so-called momentum counting scheme
(MCS), which treats the momentum between BB*) and B* B*
as a leading soft scale—see Eq. (1). As will become clear
below, the MCS selects a specific subclass of the one-loop
contributions, which are enhanced due to the presence of the
large momentum scale p. This kind of power counting was
introduced originally to provide a convergent EFT for pion
production in nucleon-nucleon collisions near the threshold,
where the large momentum scale, p ~+/m,M, with
m,(My) being the pion(nucleon) mass, was introduced
through the large momentum (relative to the pion mass)
necessary in the initial state. This approach indeed led to a
successful understanding of the nontrivial pion production
mechanisms in NN — NNz, which was not achievable
within the original Weinberg’s counting where momenta
and the pion mass where treated at the same order—see
Refs. [58,59] for reviews. The TPE contributions for pion
production in two nucleon collisions were calculated in this
power counting in Refs. [60-62].

It should be stressed that the rate of convergence of the
chiral expansion is a crucial diagnostic tool to understand
the nature of the multiquark states under investigation here:
a compact state driving the experimental signals would call
for a pole term in the scattering potential. Its presence
should then lead to a bad convergence of the series of local
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contact terms included in the EFT. After all, in a low-energy
EFT organized according to an expansion in powers of the
soft momenta, the presence of a compact state can only
influence the rate of convergence of the expansion, or in
other words, the power counting. However, it cannot
modify the individual contributions as such, since those
are built solely on the symmetries of the underlying theory.
While the data existing up to date for the Z, states can be
well described with higher-order contact terms naturally
suppressed in accordance with the power counting (up to
the need to promote the S-D counterterm called for by
renormalizability of the OPE in the presence of several
coupled hadronic channels), data with improved statistics
expected from the Belle II experiment will call for a refined
theoretical effort.

As the results for TPE diagrams derived here up to order
O(Q?) do not depend on the heavy-meson mass, they can
also be applied to other heavy-meson heavy- (anti)meson
systems, such as D®)D* — D) D* scattering, particularly
in the context of the T.. and its possible partner states. It
should be noted that for the physical pion mass, the three-
body cuts in the TPE diagrams will provide some con-
tributions to the 7. width, which need to be included if one
aims at the high-accuracy calculation of this quantity. On
the other hand, the effect of the cuts on the real part of the
TPE diagrams should be very small, and the TPE con-
tributions can be still largely absorbed by the contact
operators. This conclusion should also hold for not too

large unphysical pion masses, mi < M, < Pyp, In the
context of lattice QCD data analyses.

The TPE contributions to heavy-mesonheavy-(anti)meson
scattering have already been addressed in the literature.
For instance, phenomenological calculations in Refs. [63,64]
considered a particular subclass of TPE operators.
Additionally, Refs. [65,66] (see also [67,68]) provide inves-
tigations within the framework of EFT. These TPE operators,
however, were derived ignoring all coupled-channel tran-
sitions based on the original Weinberg’s counting and no
attempt was made to check for the renormalization of those to
the given order. In this work we overcome those short
comings. Moreover, we will provide a comparison of our
results with the earlier EFT works.

The paper is organized as follows. In Sec. II, the
Lagrangian and the vertices for our approach are provided.
The power counting scheme is discussed in detail in Sec. III.
In Sec. 1V, the effective potential of one representative
channel is presented at O(y°) and O(y?). Appendix C
contains the effective potentials of all the channels.
Section V provides the partial wave decomposed potentials
with Appendix B containing a complete set of the relevant
projection operators. Section VI summarizes the various
checks conducted on our PWD potentials and Sec. VIII gives
the comparison our potentials to those of previous works.
Section IX gives a summary and outlook of this paper.
Additionally, Appendix A provides details about the evalu-
ation of the pertinent loop integrals of the TPE potentials.

II. LAGRANGIAN AND VERTICES

The effective Lagrangian describing B*) B*) scattering
at low energies reads [39,40,69,70]

s o _ N P
L = Tr[H}(iDy), H,) + ZTr[HZa‘Hao"] + Tr[H}(iDy) , H ) + ZTr[}LILaleal] - %QTr[a-uabHLHb]

9017 Co i
+ 7Tr[HaHj,a-uab] - ?Tr[HZT‘;‘a/HZ,HbTA

_Du
8

bb'

— Cll — . .-
Hy) - ?Tr[HZrﬁa,a’Hz,Hbr‘Zb,a’Hbr]

{(Te[VIA A VH Hyoh Hy) + Te[Hy H VI, VY

D - - - _ e R
-~ % (Tx[VIH 6/VIH H 1, 6/ Hy) + Tr[H i o/ H! ViH, 7, 6/V H Yy}

D - - - - 2 . _
- % {Tr [(VZHZTQQ,GIV-/HE, +ViAA 6'VIH, - gé’kaHZT’;‘a,a’VkHz,) HhTZ‘b,aJHb/]

+Tr [H,Er‘;‘a,a‘Hl, (V’Hbrgb,afvwb, + ViH, o, 0/ViH,y — gﬁuka,,Tgb,g/kab,ﬂ } S

Iwhere a and b are isospin indices, ¢’s and 7’s are the
spin and isospin Pauli matrices, respectively. The isospin
matrices are normalized as 74,78 = 2548 and the trace
(Tr) is taken over spin space. The contact terms Cy;
(i=0,1) and D,; (i=0,1,2) represent short-range
interactions, while the ellipsis in Eq. (3) denotes similar
terms Cy; and Dy which are not shown explicitly and

(3)

[

appear without the 7 matrices. The terms proportional to
0 =mp —mp~45 MeV are the leading terms that
violate spin symmetry. To the order we are working
(NLO in the chiral expansion and in the heavy quark
expansion) they do not contribute to the loops in the
potentials but only to the two-body propagators in the
LS-equation.
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The H, and H, are super-fields which contain the B*)
and B™ fields, respectively, with H, = B, + B*is' and
H, = (Bt,), — (B*1,),,0', where B,(B,) and B} (B}) are
the pseudoscalar and vector B mesons (antimesons),
respectively. The 7,, acting as the charge conjugation
matrix in isospin space, appears in the expressions for
the anti-B-mesons, since they contain light antiquarks. H,
contains B® and (B°)* and H, contains B™ and (BT)*,
while H, and H, contain the respective antiparticles [70].
The zeroth component of the chiral covariant derivative is
given by Dy = dy + I’y with

I, = (m x dym) - T + O(m*), (4)

i
412
where f, = 92.4 MeV denotes the pion decay constant.
The spatial components of the axial current read

u=-V(-m)/f, + O@). (5)

In both cases 7 and 7 are 3-dimensional vectors made of the
Pauli matrices and the pions fields, respectively. Employing
heavy quark spin symmetry, the pion-heavy meson cou-
pling constant is fixed to

Go =g~ g~ g=0.5T7,

extracted from the partial decay width D* — D provided
in Ref. [71] (this value agrees within 10% with that
extracted in lattice QCD for static sources [72]). The terms
proportional to the low-energy constants (LECs) Cy, and
C1, correspond to the O(p°) S-wave contact interactions,
whereas the terms proportional to D, and D;; correspond
to O(p?) S-wave contact interactions. The term D,
gives rise to S-D transitions—this is the counterterm
formally appearing at NLO, however, promoted to LO
as detailed above. As we are only interested in S-S and S-D
transitions, terms proportional to VIH'V/H, leading to
P-wave interactions, are ignored [39].

From the Lagrangian provided in Eq. (3) we now derive
the vertex structures relevant for this work. The B-meson—
pion interactions are

_ 9
2f,

L g0, da[B'tB; + B[1B + ie;;BitB;]. (6)

where the indices i, j, k refer to the spacial index of the
derivative or the B* polarization vectors—summation over
those is assumed. The factor of (1/2) comes from the
normalization of the heavy-meson field as shown in
Appendix A of Ref. [73]. If we define k, the momentum
of the pion, as outgoing, we can replace the spacial
derivative in Eq. (6) by —ik and get for the various vertices

VB—Br, = 0,
g
Vp*SBr, = ? (e k)zq,
T
9
UB-B'z, — 2f ( 'k)Tav
3
UB*—»B*ﬂa = —i%l’a(é’ X G*)k

In all expressions a denotes the isospin index of the pion.
The corresponding vertices for the antimesons are near
identical to the meson case with the exception that the
charge-conjugated Pauli matrix, related to the antifunda-
mental representation of the isospin group, is to be used
which reads 7° = 7,77, = —7 [40].

The leading two-pion BB couplings arise from the
chiral covariant derivative acting on the heavy fields, namely
the Weinberg-Tomozawa (WT) vertex. In particular we have

EB(*)B(*),M- — ahc”aaO”b[B%TcB + B*jTTcB*j}' (7)

1
——¢€
4fz
From this the pertinent vertices are

1
UBr,—Br, = Weabcfc(ké + ko),
b

1
UB*n,~B'm, = meubc% (€-€") (ko + ko).

where k (k) denotes the zeroth component of the incoming
(outgoing) pion four-momentum. Again, to switch to the
corresponding vertices for the anti-B-mesons the 7 matrices
need to be replaced by their charge conjugate counterparts.

III. POWER COUNTING

The power counting of the pion loops for the B*)B(*)
potentials (and also the B*) B*) potentials that we calculate
as a byproduct) is dependent on the three dynamical scales
of the system namely, the pion mass, m,, the momentum
scale py, = /mpo ~500 MeV and the difference of mp
and mpg., O0~45 MeV. The hard scale is the chiral
symmetry breaking scale A,, but it may also include the
heavy meson mass mp. Since the binding energies of the Z,
states are generated dynamically through the solution of the
LS equation, they do not need to be considered in the power
counting for the potentials. As we aim to fit the available
experimental data in the energy range that covers both Z,
states, we need an effective field theory that allows us to
cover the energy range from the BB threshold up to the
B*B* threshold, which spans 90 MeV. We therefore need to
treat p, dynamically as a soft scale. It is therefore
important to keep track of momentum scales, which dictate
the pertinent contributions in the loops. Thus, the expan-
sion parameters are

034042-5
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B B
(E1,p) (Es,p")
Es —
—p' =1
B B
(E27 —P) (E47 _p/)
FIG. 1. Typical one loop diagram that appears at NLO in the

momentum expansion as well as the standard power counting.

Pyp m, Pyp 0
== 9’ - ’ - k) - k) 8
X1 A, 212 A, X3 =0 da A, (8)

which numerically take values of about 1/2, 1/7, 1/10, and

1/20 in order. It should be noted, however, that in the

charm system the mass splitting between the pseudoscalar

and vector ground state mesons is of the order of the pion

mass, making y, and y, similar. Because of this and to keep

the scheme simple, one may combine the given parameters
into a one-parameter expansion,

2.2

X~X N~ AN X~ A 9)

|

,7 Te N
B /B \ B
(Ex,p) — (Es,p")
|
q :ﬂ’d
B ! B
(E27 _p) (E47 7pl)

FIG. 2. Typical one loop diagram that appears at NNLO in the
momentum expansion, but at NLO in the standard counting.

In what follows we are only interested in the leading loop
contributions. In particular we will use that m,/ pyy,, ~ O(y).

The implications of this power counting scheme for the
order assignment of one-loop diagrams is now illustrated
on two examples, namely one specific TPE contribution to
the BB — BB potential seen in Fig. 1, and a one-loop
vertex correction shown in Fig. 2. Since we are focusing on
the leading loop corrections, in all cases the vertices are
taken in leading order only.

The effective potential for the triangle diagram is
written as,

| &l ’
iV = ;/er%((ﬂo + q0)€can(t1)) (Es—ly—mg — (p' +1)?/(2my))

(-0,

where

q = (Es.p') — (E1.p) = (0.q) + O(x), (11)

with p and p’ as initial and final relative momenta of the
heavy mesons, respectively, and E; (E,) and E5 (E,) for the
energies of the meson (antimeson) in the initial and final
states, respectively. For this discussion we assume that the
external states are on their mass shell and the total energy is
at the B*B* threshold. Then g ~ p,y,. Using

€can(T)n(72)a(72) = =2i(71 - T2), (12)

and
Ze}‘(l)ej(/l) = 0j (13)

we get,

(I+q)* —m?

9 . . i

(32 @D+ D69, ) s (10)
7
Vr = 4_ﬁ:(11 1)1 (14)
where the pertinent integral is given by,
I _l/ d*l 21y + qo
2] et \lo+ 6+ (T + 1)/ (2mg.)

(I+q)-1 (15)

T+ g —m2 + ie][? = m? + ie]

One observes that the pion propagators drive Iy ~ [ ~ pyy,
[58,59]. Indeed, keeping the leading terms in the pion
propagator, one finds

(I+qP-m+ie=1—(1+q)?*+ie+0@%), (16)

which yields Iy ~ g ~ pyy, as well as |I| ~ p,,. Then, one
observes that [, is the dominant term in the expression
within the parentheses in the first line of Eq. (15). Because
of this, we can drop all terms except [,, since all other
terms appear to be suppressed relative to [, either as
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8/Pyp ~ O(x) or py,/mp which is counted as O(y?)
according to Eq. (9). Thus the integral to evaluate is

/ —i/ d*l (I+q)-1
) @)+ q)? — m2 e[ — m2 + ie]’

with the dominant contribution coming from [ ~ g ~ py,.
As long as multiple scales enter the expansion, any given
loop contributes at various orders simultaneously [58,59].
The lowest order at which the pion loops start to contribute
to B¥B™ and B®BM scattering is O(y?). To derive
results at O(y?), all scales except for g~ p, can be
initially omitted in the loop expressions. But the same loops
also contain contributions additionally suppressed by
(mz/pgyp). thus contributing at O(y*). To illustrate this
point, we use dimensional regularization to find for the
integral in Eq. (17) the following expression

1 ((5, 3 13 . m
o=~ (2 22\
w 167r2{<12q +2m”> 367 73

5, ) m, 5, 4,
+(6q +3m,,> ln<ﬂ>+<6q +3m,, L(q)

o BB (™) + 1@} +ou). (9

(17)

T 9622

where u is the renormalization scale in dimensional
regularization,

2 2 2 2
Lig) = Y4mzta ln(\/4mﬂ+q +q>
q 2m,
— (L
= ln<mﬂ) +0(). (19)
and

R:—%—i—y,;—]—ln@n) (20)

with £ =4 — D and yg = 0.57 denoting the Euler-Mascher-
oni constant. Thus, the dominant loop contribution, as
evaluated in the last lines of Egs. (18) and (19), corresponds
to O(y?), while in general, the loops [see the first lines in
Egs. (18) and (19)] also give rise to higher-order terms.
Since the leading order potential for scattering of two heavy
particles appears at O(y°) and, as in the two-nucleon
system, there are no contributions at O(y), the loops at
O(y?) are, by convention, associated with the next non-
vanishing order, referred to as NLO.

For the vertex correction (seen in Fig. 2) the integration
variable can always be chosen such that the pion propagator
in the loop does not contain any external variable.
Therefore, contrary to Eq. (16), the momentum g ~ pyy,
does not enter the pion propagator in the loop. Hence, the
energy scale [, in this case is given by either 6 or m,, since
both are being counted at the same order. At the same time

the momentum scale is also given by m,. Combining all
factors, we conclude that the vertex corrections are sup-
pressed as compared to the TPE discussed above by a factor
of (m,/py,)* = x*. Due to this observation, all the vertex
correction terms can be ignored in this study, since they
start to contribute only at order N3LO.

IV. EFFECTIVE POTENTIALS

In this section the effective potentials of BB —
B®B® and B® B — B®BX are discussed—further
details are provided in the appendices.

A. Leading-order diagrams for B*)B*) — B*)B(*)

1. LO contact terms

The relevant contact term (CTs) diagrams at leading
order [O(y°)] are shown in the left column of Fig. 3. The
CTs contain the momentum independent terms propor-
tional to the LECs C’s from the Lagrangian in Eq. (3) as
well as the S-D transition term, D;,, promoted to leading
order as described in the introduction.

=

CTy
D
>< :
CTy Os
_
~ |
CTs CTy Oy
— —
P |
CT5 CTG 05
< |
CTr Or
=<
CTsg Osg
—_—]
>\< o
CTy Oy

FIG. 3. LO contributions to the B B*) — B B*) scattering
potential. Here single (double) solid lines denote B (B*) mesons
and dashed lines represent pions.
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FIG. 4. NLO diagrams for BB — BB.

2. LO one-pion exchange

The vertices for the one-pion exchange were derived in

Sec. II with ¢ as the pion momentum. Since the kinetic

energies of the heavy mesons are suppressed by pyy,/mp ~

O(x?) relative to the momenta, we can safely set them

to zero here. At the same time, using that 6/py, ~ O(x)

from Eq. (9), this implies that the energy transfer,

" =E » — Ey, can be dropped completely. Taking all this
together, we get for the B*B — BB* potential
’ qidn

g +m;’

=i

where the external polarization vectors for incoming
and outgoing B* meson (B*) are denoted as ¢ ; and €},
(€2, and €, ), respectively.

Vo (21)

(71 '75)(63/,,,61,1')

k

The isospin factor for heavy-meson heavy-antimeson
scattering reads

T T =—T1- T, =3-2[(I+1), (22)

which evaluates to 3 for isoscalar and —1 for isotriplet
states.

B. Next-to-leading order diagrams

At next-to-leading-order, O(y?), there are momentum-
dependent contact interactions and the TPE diagrams.
|

. d*l 1
iV, = ;/W%(ZZoecdh(Tl)h) 2

There are three types of TPE diagrams: triangle-diagrams,
football-diagrams, and box-diagrams. In the main part of
the paper we discuss general properties of these diagrams
while the complete expressions are provided in the
Appendix C.

1. Contact interactions at NLO

The relevant CTs at NLO, O(y?), are the two momen-
tum-dependent terms proportional to D, and Dq;, as seen
in the Lagrangian in Eq. (3). The chiral expansion formally
also generates momentum independent subleading contact
terms proportional to m2, which in the standard power
counting would appear at the same order. In the momen-
tum counting scheme imposed here, however, those are
suppressed by (m,/ pyy,)* ~ x* and thus start to contribute
only at O(y*). In addition, for a fixed pion mass, the m2-
dependent CT’s only lead to a redefinition of the LO CT'’s.

2. Triangle and football diagrams

For the B®)B™) case, the sum of all triangle diagrams
vanishes. In this section we demonstrate this explicitly for
the BB — BB channel, however, the same pattern applies to
all the other potentials analogously. For the BB — BB
potential, as shown in Fig. 4, we have two triangle diagrams
denoted as T¢; and T;,. The potential from the first
diagram is (The labels on the potentials given below refer to
those in the related figures),

i i

—m2 (=ly + ie)

(- W0 (5 @O+ D)) (5o 23)
The potential can thus be written as
&
Vo, = m(ﬁ 12y, (24)

where we used ), €7 (4)e;(4) = &;;. The analytic expression for the integral /,, is provided in Eq. (18). The second diagram

simplifies to
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VTI_Z = (Tl TZ)Itrv (25)

4 fr 414
where the change in sign resulted from the appearance of
the charge conjugate isospin matrix at the lower, zB — 7B
vertex. The total contribution therefore cancels. If, instead,
we calculated the BB potential, V7 , would appear with a

positive sign, and the two triangle contributions would be
summed.
The potential for the football diagram reads

1
T2t
where Iy, is given by,

. d4l (ZO)Z
In = ’/ Qr)*[(L+ q)* = m2 + i€][> — m2 + ie] (27)

Vi (71 2) Iy (26)

Here, g, and ¢, are the momenta of the two pions and, to
the order we are working, one finds ¢, = ({y,p —1),
q> = (lp,p' =1), and g = (0,p’ —p) = (0,q), where [ is
the loop momentum. This can be written as

g' ()
R LRECR A (30)

0X

Vg

where we used (7;),(71).(72)4(2).

m_, / d'l
I =i
box (27)* I+ i€][I° -

For the crossed box (C; in Fig. 4) the simplified expression
reads

= (3 - 2(‘[1 : Tz)) and

(42 q1)*
PR pegpe L)

4
g
Vcl 16f4< -3 - 2(1'1 Tz))lbox (32)
where, we used (71),(71).(72).(2); = 3 + 2(71 - 72), and
IS))X is given by,

(42 q1)°
i€]*lq3 — mz]lq7 —mz]

4

@ _,; [ 4!

I = 33

box l/(zﬂ.)zt [IO_ ( )
(1) and I 2

The only difference between I, box 18 the sign in the
ie term in one of the heavy meson propagators. Just because

d —lo+i€

= o

The evaluation of this integral is provided in the
Appendix A 2. A closed form expression for this integral
at the order y? reads

In, :q—zz{g—gﬂ (%) +L(q)} +O0(Y).  (28)

3. Box diagrams

The box diagrams are made from four pion—heavy-
meson vertices contracted with two pion propagators.
These form either a planar box or a crossed box. To avoid
double counting, only the irreducible two-heavy meson
part of the planar box is kept in the potential, as the
reducible parts are generated through iterations in the
Lippmann-Schwinger equation. Again, for illustration,
the BB — BB case is discussed explicitly. For the planar
box B; in Fig. 4 one finds

i {%}” (ej(/h)(‘h)j)(fl)c} m

i
lo+i€'

(€ (h)(~q n@@ (29)

|
of this sign change the former integral contains a reducible
contribution, while the latter does not. In Ref. [74] and

Appendix A 4 it is shown that the irreducible contribution

of the integral Il(m)x is identical to I](DO)X Accordingly, the

resulting irreducible contribution of the box diagrams to the
effective potential for BB — BB reads
4
9
=V Ve, =—
nte T T

The derivation of this integral is provided in Appendix A 3 a,
the final result at O(y?) reads

_23q2{7§+1§,z;+1 <ﬂ)+L( )}+O(ﬂf4)'

(35)

(71 ). (34)

box

box
VBB—»BB

(2)
I =
box 9672

The effective potentials for the OPE and TPE in the case
of all possible transitions for B*)B*) — BB scatter-
ings are listed in the Appendix C.

C. B¥B" - BHBX

The same topologies as discussed above also contribute
to BB scattering. However, in contrast to B, for B
mesons there is no charge-conjugated Pauli matrix
(¢ = —7). It is evident that this change does not affect

scattering
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CT;

FIG. 5.

the box diagrams as there is an even number of pion-
emission vertices on each heavy meson line. However, this
sign change is important for the one-pion exchange, the
football diagrams and also some triangle diagrams, with an
odd number of vertices in the antimeson line. For example,
for elastic BB* scattering these changes will affect dia-
grams O, and Os in Fig. 3 and diagrams F3, T3 ,, and T3 3
in Fig. 6. As a consequence of this, for B-mesons the
triangle diagrams do not cancel. Additionally, we note that
the isospin coefficients for scattering of two heavy mesons

NLO diagrams for BB — B*B*.

are generally different from those of one heavy meson one
heavy antimeson, because of the differences in their isospin
wave functions. In particular, the 7; - 7, matrix element for
a heavy meson-antimeson system is given by Eq. (22),
resulting in =3 for / = 0 and +1 for / = 1. The same values
are obtained for isospin matrix elements in elastic tran-
sitions between two identical bosons, namely PP — PP
and VV — VV, where P and V represent pseudoscalar and
vector mesons, respectively. However, for the PV system,
the matrix element depends on the topology, namely on

CTy Ts51
\ / \ / | |
\ / \ / | |
\ / \ / | |
NS I I
T3.2 ER B34
| | AN e N s
| |
| | /)\\
| | 7z AN ’ N
B3,2 CV3.2
FIG. 6. NLO diagrams for B*B — B*B
! ! AN 7
| | N s
o
CTy Cy
FIG. 7. NLO diagrams for B*B — BB".
| |
| |
) ' : :
CT} Bs1
| | AN ’ N L’
| | Nz
! ! /)K\
| | 7 N 7’ N
B5A2 05.1 C5A2

FIG. 8.

NLO diagrams for B*B — B*B*.
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Bs.2

FIG. 9.

Br.a

0641 CV6.2

1 1 / \
\ 1 / \
N/ / \
Fr 171
/N \ /
/ \ \ /
/ A\ \ /
/ \ \ /
/ \ N/
T73 T7.4
| | | |
| | | |
| | | |
| | | |
J ! L L
Br.2 B3
N P N >
AN N 7
X S
PN
RN AN
, N , N
Cr1 Cra
N >
N
N 7
S
PN
AN
, N
Cr.a

FIG. 10. NLO diagrams for B*B* — B*B*.

whether the initial PV transform to the final V P (u-channel) Specifically, the isoscalar transition in the u-channel has a

or PV state (t-channel)

3;
<(PV)[|TI : 72|(VP)I>u—cha.nnel = { 1:
<(PV)I|TI : TZ|(PV)I>t—chzmnel = 1:
T3

FIG. 11.

different sign, as compared to all other isoscalar transitions.
The explicit expressions for the B(*B() — B(*)B(*)
potentials are provided in Appendix C.

(36)
V. PARTIAL WAVE DECOMPOSITION
(37) In this section, the effective potentials from the
earlier section are decomposed into four channels
Bg C‘8

NLO diagrams for BB* — BB.
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JPC = 0t+, 17+, 17, 2+*. For those we chose the follow-
ing bases [40]
O+Jr . a,ﬂ = {BB(ISO), B*B*(ISO), B*E*(SD())}
1" :a,p={BB*(3S,,+), BB*(°D\,+),B*B*(°D,) }
1*=:a,p={BB*(*S,,-),BB*(°D,, -),
B*B*(’S,).B*B*(°Dy)}
2t+:a,p = {BB('D,), BB*(°D,), B*B*(°S,),
B*B*('D,), B*B*(°D,), B*B*(°G,)}.  (38)
The individual partial waves are labeled as >5*!L; with S,
L, and J denoting the total spin, the angular momentum
and the total momentum, respectively. The sign in paren-

theses for BB* states corresponds to their C-parity which is
given by

L
V2

The partial wave decomposition (PWD) of the potentials is
done using the formalism of Ref. [40], which gives

1 /dQ,,dQ
27+ 1

IBB*, ) = — (|BB*) + |B*B)). (39)

" Tt[P(a,n)VP(B,n')]

Vap (") 4z 4rx

(40)

where n =p/|p|, n’ =p'/p’|, P'(a,n), and P(B,n’) are
outgoing and incoming normalized projectors respectively
with o and f being the bases states mentioned in Eq. (38)
and finally, V are the potentials calculated earlier. Due to
the spacial symmetry of this 2 — 2 reaction, only the angle
6 between the incoming and outgoing momentum needs to
be considered and we use the notation x = cos(6). Then the
above expression simplifies to

with the trace taken over the spin indices. The partial wave
projectors used to calculate the potentials are provided in
Ref. [40] and repeated in Appendix B to keep the
presentation self-contained. Using the effective potentials
derived here, the scattering amplitudes can be obtained as a
solution of the partial-wave decomposed coupled-channel
Lippmann-Schwinger equation

Ta/}(E’p’p/) = V(l[}(Ev p’ p/)

Adgq? )
| =5 VulE p.q)G(E, q)T4(E q.p'), (42)
0 2

where the sharp cutoff A is introduced to render the integral
equation well defined. Alternatively, the potentials in the
Lippmann-Schwinger equation can be regularized using the
method proposed in the NN sector in Ref. [75], which
explicitly preserves long-range interactions (see also
Ref. [76] for related work in the double-quarkonium
sector). We expect both methods to yield similar results
and defer explicit checks to future work.

Further, the two-body propagator in the channel y from
the list given in Eq. (38) is

G}/ = (qz/(zl“ty) + ml,y + m2,y - \/E - ie)_l’ (43)

where /s is the total energy and the reduced mass of two
heavy mesons with the masses m, , and m, , in the channel
y reads

nmy,m;,

_ MMy 44
Hy P (44)

The partial wave projected potentials for BB —
B®B™ in the J°C = 0** channel are presented here and
the partial wave projected potentials for the rest of the

channels (JP¢ = 17+, 17=,27%) are listed in Appendix D.
The pertinent integrals used in PWD are abbreviated as

| : S .
Vs (JPC) = 1 - ﬁTr[PT(a, n)VP(B.n)., (41) o(p',p), R(p', p), S(p’, p). Their explicit expressions are
27+1)4 2 given in the Appendix E. We denote |p'| = p’ and |p| = p.
|
A. BHOBx) 5 BB
1. JPC=0+ +
Cot3Ci+ Dy +3DNP*+p?) V3 +Di(p*+p7)  —V3D,p”
Ver' = WACH DU + %) Ca=3Ch+ (DL =3P+ P =Dpp” | (49)
—V3Dipp? ~Dgpp? 0

where the index / stands for isospin and the parameters are convenient linear combinations of the Lagrangian parameters of

Eq. (3).
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; 0 70 7 (02-30,)
VoogE = 4f2 (t1-72) %Qz _%QZ %(* - Q) (46)
$(0:-30,) 5(%-0,) 3(50,-60,-60, +180,-90,:)
(V(%Ea)n \f 4(V%E) 12 2?94(‘/%;:) 13
++ 1 o+ ++ ++
Viee = 162272 364 (Vipe) Vi) 1539 (Viee)x (47)
g—gg (Vee)31 f\l/gg( Tpe)3 (Vipe)s3
where,
(V%E)n = SO(P/’P) (48)
++ ny
(Ve = (Vi)ar = (07 + 1) [—R £1-20n (7)} “2R,(p. p) (49)
ot+ 2 ” my / 2 /
(Vipe)1s = 3(1’ )|=R+1-=2In " —2R,(p'. p) +§R2(P . D) (50)
g S 94
Vs = S+ 5 {2R07 + 97) =207 4 97 4 102 4 7)) 44800, (51)
(Vie)as = 2" [ZR 2+41n(” )] FABR (D)~ Ra(p )} (52)
0++ 2 2 ny / 2 /
(Vipg)s1 = g(P )|=R+1-=2In i 2R,(p'.p) +§R2(P .p) (53)
(Vi) = 207 [m 2+41n(ﬂ )] FABR,(7 . p)— Ro(p'. ) (54)
Vi =S5+ L { G [ -t et
TPE/33 — P2 T - — P Lp -5 ’a2\psp
4 |64p'p | 4 s—p 8
21 !/ ! 1 ! !/
_§ Rn(p7p)+Rn/(p’p)_ERZ(p7p)_3RX(p7p) (55)
and,
_ 1 dx 23 1 5 5 m\ (23 1 23 1
/ _ - . 2 = 4 o _ _r -~ 4
So(P', P) _/_1 > (T m)g {RLsg +24} + <144g 72) ln<ﬂ > (24 12) +L(q><24g +12>}
23 1 5 5 23 1 m
— . n 2 n oo 2 a2 2 (™=
(71 'rz){R(p +p)<489 + >+(p +p )(1449 72>+(p +p )<24g +12> <ﬂ>
23 1
w20 ) (15 | (56)
_ Ldx (352 1) 23, 1 5 5 23, 1 23, 1
/ _ A S . 2 4 Y o
SZ(I”"”)_/_l s 5 (e {Rng +24] + (1449 72> “n( ><24 +12> +L(9) (249 +12)}
23, 1
e B p) =6+ IR 0) + (P 4 PP =4 Rl (G ) | 6D
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B. B®B® - BHRB(x)
The PWD potentials can be obtained in exactly the
same way as for B*)B*) — B() B(*) However, in this case
due to Bose symmetry for identical heavy mesons, certain

partial wave transitions are forbidden by quantum number
constraints. In particular,

V1:0(3<*>B(*) N B(*)B(*),()Jr)
= V=9(B*B* - B*B*,2") =0
J

23

48

and
VI=!(BB* - B*B*,17) = VI=!(B*B* — B*B*,1") = 0.

Also, the additional contribution from the triangle diagrams
and the signs, as discussed in Sec. IV C, have to be
incorporated. The additional triangle contribution can be
included in the PWD potentials of B*) B(*) by changing the
Si(p', p) functions [which includes S,(p’, p), S,(p', p),

and S4(p’, p)] to Si(p’, p) functions [Sy(p'. p), S>(p'. p),
and S4(p’, p)], where Si(p’, p) is given by,

247 T4

1 dx 5 1 5 13 5
Si(p'.p) = / — P(x) (7 -fz)qz{R[—g“ -—q ——} + <—g4 + =g +—>

1

m 23 5
Inl =Z ) [ == = — 2 ——
+n<ﬂ)<249 127 "1

where P,(x) denotes the kth Legendre polynomial
(k=0,2,4; in our case).

VI. CHECKS OF THE RESULTS

A nontrivial cross check of our results is provided by
the renormalization of the formally divergent loops,
which has to work at each order in the power counting
separately. Specifically, the divergent terms [R-terms—see
Eq. (20)], contained in the loop contributions of B B
(and similarly B*)B*)) TPE potentials must consistently
match to the LECs of the contact interactions. This
matching has to work for each type of diagram separately:
the footballs, scaling with ¢°, the triangles ~g¢?, and the
boxes ~g*.

We take the case of (Vpg ), from Eq. (49) in Sec. VA 1
and relate it to (V2}),, in the 0** channel as an example.
By equating the divergence of the TPE loop integral with
the LECs (CJ’[, D}) for the g* contribution, one finds for the
divergent parts of the counterterms

C} =0 (39)
_Rg4

[ — ) 60

! 322 f2 (60)

Similarly, equating the divergence of (V9p);, and
(V9g)r With (V(g;)” and (V‘g{)zz, respectively for g*
contribution, results in

¢l =0 (61)

Rg* (23

144 72 72

Following the same procedure for (V2 );; and (Vg )3
with its prefactors, one finds the divergent part of DL, as

Dl V2Rg*

_ Verg 63
SD 1287214 (63)

Similarly, when performing this exercise for all ¢° terms in
B®) B™) case, one finds

Cly=Cl =D} =Dl =0 (64)
D)= ﬁ (71-72) (65)
and in the ¢> case
C,=Ch =D, =Dl =0 (66)
Dl = izgz(rl - Ty) (67)
384rn-f

The renormalization program provides a nontrivial cross
check of the calculations. For example, the divergent terms of
the PWD potentials (V% ),5 and (V& ),; corresponding to
BB('S,) - B*B*(°D;) and B*B*('S;) - B*B*(°D,),
respectively, must be related such that their infinities
can be absorbed into one single DLy term in Eq. (63).
Performing the same exercise for the remaining transitions,
we confirm that Cf, C}, D!, and D} absorb all the diver-
gences of BB('Sy) = BB('S,), BB('S,) — B*B*('S,), and
B*B*(1Sy) — B*B*('S;) PWD potentials consistently.
Moreover, we verified that with the counterterms determined

above, all B®B®) transitions with the quantum numbers
O+, 17F, 17, and 2t are finite.
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As a further nontrivial cross check we verified that the
triangle contributions add up in the B*) B*) case and cancel
for B*) B*), by computing the diagrams in particle basis for
both cases.

VIL. PLOTS OF POTENTIALS

In this section we present some representative plots
for the TPE potentials in momentum space. Please note
that, although in what follows we refer to the results for
B-mesons, the heavy meson mass does not explicitly enter
the TPE contributions at the given order. Therefore, these
results are equally applicable to D®)D®*) and D*) DX
scattering at the order we are working. The only difference
to keep in mind is that for the physical pion mass, the three-
body cuts in the TPE diagrams will contribute to the
imaginary part of the scattering amplitude. These contri-
butions are not captured by our power counting but may
become important if one aims for a high-accuracy calcu-
lation of this quantity. This is particularly important in the
context of accurately extracting the width of the T, state
from data [77].

In what follows, for the sake of illustration, we present
the heavy meson heavy (anti)meson TPE potentials for
various partial waves and typical momentum regimes. We
also compare the momentum dependence of these poten-
tials with that from the pure LO + NLO contact inter-
actions and demonstrate in this way that, to the accuracy
assigned to this chiral order, the full potentials are repre-
sented well by the contact terms only. This suggests that the
nonanalytic contributions are suppressed. In this section,
we also discuss the contributions of the individual TPE
diagrams to the full results. To generate the plots, we set
u = 1.156 GeV and neglect the R term, as it contains
divergences that are absorbed by the contact terms, as
discussed in the previous section.

Figures 12 and 13 show the results for the / = 1 B*)B(*)
TPE potentials with initial momenta of p = 500 MeV and
p=m, respectively, plotted as a function of the final
momentum.” Similarly, Figs. 14 and 15 show the results
for the B®*)B(*) system under the same conditions for the
initial momenta. In the B™*)B(X) system, however, only
those transitions are shown that are allowed by Bose
symmetry. In all these plots, the red solid lines represent
the full potentials, which include terms additionally sup-
pressed by (mz/pf,). while the red dashed lines corre-
spond to the potentials expanded to O(Q?)—see, e.g.,
Egs. (18) and (19) for details. As one can see for all cases
shown, the deviation between these curves is well below
the expectations from the power counting. As expected,
the discrepancies for p = m,, are slightly larger than those
for p ~ py, Additionally, it is observed that the TPE

Note that the characteristic momentum Piyp = 500 MeV for
both BB- and DD-meson systems.

potentials in the kinematic region where p ~ p’ ~ py,, are
larger compared to those at lower momenta. Specifically,
Vpg(m,, m,) is significantly smaller than Vpg(piyp, Piyp)
in line with the power counting.

As the corresponding black lines we also show the
results of fits of the pertinent contact terms from Eq. (45)
[see also Egs. (D1), (D11), and (D26)] to the full potentials.
The fits were done for p = 500 MeV, with the LO contact
terms fixed by the values of the potentials at p’ = 0, and the
NLO contact terms adjusted by fitting the slope. By fitting
two different TPE potentials [e.g., BB('S;) — BB('S,) and
BB('S,) — B*B*('S,)] we were able to individually extract
the values of the low-energy constants Cy4, Cy, Dy, and Dy,
that represent the TPE contributions best. All other
coupled-channel transitions with different J¥C are therefore
predictions, with all LEC’s fixed. Remarkably, the curves
representing the contact interactions for p =~ p, show
excellent agreement with the TPE contributions across the
entire momentum range of p', including p’ ~ p,,,. The
deviations are more sizeable for p = m,, however, not
exceeding expectations from the power counting.
Moreover, the contact terms fixed from the 'S, transition
also represent well the TPE potentials for the other quantum
numbers. For illustration, we show the 17~ potentials, which
are shown in the lower panels in Figs. 12 and 13. Similar to
S — S transitions, we extracted the value of Dgp for a
particular S — D transition, which was chosen to be
BB*(3S,) — BB*(*D;). With this value fixed, the S — D
contact interaction also provides reasonable estimates for all
other S — D transitions as illustrated in Fig. 16 for p =
500 MeV and Fig. 17 for p = m,. In these plots, we present
results for various B*) B*) transitions in the 1~ channel as
an example; however, the results for all other transitions with
different quantum numbers exhibit a very similar pattern. The
results shown in Figs. 12—17 for both B*)B*) and B*)B*)
demonstrate that the leading contribution of the TPE inter-
actions is predominantly polynomial in momenta, while the
nonanalytic logarithmic contributions are suppressed.

Clearly, the values of the LECs extracted above are not
their physical values, which can only be determined from a
fit to the data. What we aimed at here was more the
demonstration that the TPE contributions can be largely
represented by contact terms, suggesting, in particular,
that the results of Refs. [39,40] for a coupled-channel
analysis of the Belle data in the context of Z,(10610)
and Z,(10650) and their possible spin partners, can be
interpreted as a reasonable representation of an NLO
calculation. However, to obtain accurate results, e.g., for
the pole locations of the Z, states with fully controlled
uncertainty estimates, a data analysis that includes the TPE
contributions is needed.

In Fig. 18, we show contributions from individual
diagram types—football, triangle, and box—to the TPE
scattering potential for three representative partial waves.
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FIG. 12. The TPE and contact potentials of the B*) B(*) system in the momentum space as a function of the final momentum p’ for the
initial momentum p = 500 MeV. The solid (dotted) red lines represent the full [expanded to O(Q?)] TPE potential, while the solid
(dotted) black lines illustrate the results of the fit of the contact potential at p = 500 MeV to the full (expanded) TPE potential, as
described in the main text. Figures (a)~(c) depict transitions in the 07+ channels, namely (V9p5) 1, (Vg )12, and (V95 ),,, respectively.
Figures (d)—(f) show transitions in the 17~ channels, namely (Vipg);;» (Vipe)is» and (Vipg)ss, respectively. All figures correspond

tol=1.

All contributions for BB*) are evaluated for I = 1. For
BB™), we display only the transitions allowed by Bose
statistics: the elastic BB('S) transition for I = 1 (d), and
the BB*(3S,) transitions for /=0 (e) and I =1 (f).
Additionally, the elastic B*B*(3S,) contributions are iden-
tical to those for BB*(3S,), as are B*B*(3S,)(I = 0) and
BB*(3S,)(I = 0), so these are not shown.

It can be seen that the box contributions, proportional to
g* (indicated by orange dashed lines), are generally the
smallest among the different types. For a given isospin,
these contributions are identical for both meson-meson and
meson-antimeson scattering [see panels (a) and (d) in
Fig. 18 for (1S,), and (c) and (f) in Fig. 18 for (S, ) partial
waves, all with / = 1]. The triangle contributions (terms
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Same as in Fig. 12 but for the initial momentum p = m,.
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FIG. 14. The TPE and the contact potentials of the B*) B*) system in the momentum space, allowed by Bose symmetry, as a function
of the final momentum p’ for the initial momentum p = 500 MeV. The solid (dotted) red lines represent the full [expanded to O(Q?)]
TPE potential, while the solid (dotted) black lines show the results of the fit of the contact potential at p = 500 MeV to the full

(expanded) TPE potential, as described in the main text. Figures (a)—(c) depict transitions in the 0T channels for I = 1, namely (V%E) 11
(V95 )12> and (V9p5),, Tespectively. Figures (d)—(f) show transitions in the 1+ channels for 7 = 0, namely (Vipg);, (Vipg) 3. and

(Vipg)ss respectively.

~g?, shown by green dashed lines), cancel out for B*) B(*)
scattering, but do not vanish in the B*) B*) sector. They are
positive for BB('S,) and BB*(3S,)(I = 1) and negative for
BB*(3S,)(I = 0), with these differences arising from the
different isospin coefficients in Eq. (37). Finally, the

football diagrams, which change sign when switching
from B B™ to B(*)B<*), show a behavior very similar
to that of the triangles in the BB sector.

All in all, the resulting BB"*) TPE contributions are
always negative. In contrast, the TPE contributions for

e
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FIG. 15.

- B'B*(’8)»B" B*(’S))

00 02 04 06 08
p' [GeV]

Same as in Fig. 14 but for the initial momentum p = m,.
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FIG. 16. The TPE and contact S to D wave transitions of the B*) B*) system in the momentum space are presented as a function of the
final momentum for the initial momentum p = 500 MeV. Since the S to D transitions arise solely from the box diagrams, which are the
same for B*)B*) and B*) B*) before the partial wave decomposition, only the B™*) B*) contributions are shown. The solid (dotted) red
lines represent the full [expanded to O(Q?)] TPE potential, while the solid (dotted) black lines show the results of the fit of the contact
potential at p = 500 MeV to the full (expanded) potential, as described in the main text. Figures (a)—(c) depict (Vipg) 2> (Vipg) 14> and
(Vipg)s4 respectively.
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FIG. 17. Same as in Fig. 16 but for the initial momentum p = m,,.
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FIG. 18. The individual contributions to the TPE potentials for the BWB®) (first line) and the B B®) (second line) system in
momentum space for p = 500 MeV. Here, the red solid line represents the full TPE potential and the blue dashed, green dashed, and
orange dashed lines represent the contributions proportional to ¢° (footballs), ¢* (triangles), g* (boxes), respectively. Figures (a)-
(c) depict (V9g) 11> (Vipg)11» and (Vipe),, for I =1 in the BB system, respectively. Figures (d)~(f) depict (V9pg),; for I = 1,
(Vise)y; for I =0 and (Vipg),; for I =1 in the B®B™) system, respectively.
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BB™) depend on isospin: they are notably large and
negative for / = 0, indicating strong attraction, while they
are positive for I = 1, corresponding to repulsion. It is
important to note that while the results presented here are
for B-mesons, the derived TPE contributions up to order
O(Q?) are independent of the heavy-meson mass. Thus,
they also apply to other heavy-meson heavy-(anti)meson
systems, such as D*)D* — D) D* scattering, particularly
in the context of the T.. (I = 0) and its possible partner
states. Recently, DD* — DD* scattering with J© = 1(3S,)
was investigated on the lattice at m, = 280 MeV for both
I =0 [54,56] and I =1 [78], see also Refs. [79,80] for
related lattice investigations. An analysis of the individual
correlators contributing to both isospins revealed that the
difference between the two isospin channels is associated
with isovector-vector exchanges, such as the TPE contri-
butions in the p-meson channel, yielding attraction for
I =0 and repulsion for I/ =1 [78]. We note also that
Ref. [81] pointed out the role of the TPE in the / = 0 DD*
potential at separations » ~ 1-2 fm and nearly physical m,,
though the isospin and total spin of the zz system were not
specified—see also Ref. [67] for a related discussion.
The pattern discussed above is in line with our calculations
at the physical pion mass [see panels (e) and (f) in Fig. 18].
Additionally, repeating the calculations at m, = 280 MeV
shows qualitatively similar results also at this pion mass,
with a significant attraction for / =0 and a milder
repulsion for I = 1.

VIII. COMPARISON TO EARLIER WORKS

When comparing our OPE results with the ones calcu-
lated by Wang et al. [39] [given in Egs. (22)—(28)], one
finds that their results calculated for the isovector case
agree with ours. Also the PWD contact interactions in [40]
[see Egs. (12)—(15) in this reference] agree with ours.

For the TPE contribution in B*B®*) — B*)B*) scat-
tering, however, our results disagree with those of Wang
et al. [66] [given in Eq. (10)]. In this work, there is a net
triangle contribution (terms proportional to ¢*) in the total
TPE potential, which in our case is absent. At the same
time, their total TPE potential does not have any box
contributions (terms proportional to ¢*), which are
present in our case. Only in case of the football diagrams
(terms proportional to ¢”) we agree to the results of
Ref. [66].

Furthermore, we compared our results to the TPE
potentials of Wang er al. [65] for BB scattering.
Contrary to the meson-antimeson scattering amplitudes of
Ref. [66] referred to above, the TPE potentials for
antimeson-antimeson scattering in [65] contain all types,
namely football, triangle, and box contributions.
However, a direct comparison with our potentials is
difficult, since the results are given in quite different
form compared to ours.

IX. SUMMARY AND OUTLOOK

Chiral effective field theory has recently become a
precision tool for analyzing low-energy few-nucleon reac-
tions, nuclear structure, and form factors. Combined with
heavy-quark spin symmetry, this model-independent
approach also allows one to probe the properties and
internal structure of exotic states in the quarkonium
sector, provided they are located near certain hadronic
thresholds. This work is part of a series dedicated to a
systematic understanding of the nature and properties of the
Z,(10610) and Z,(10650) states in the bottomonium
spectrum within chiral EFT.

In Refs. [39,40,50], analyses of the experimental data
for the Z, states in the elastic and inelastic channels
were conducted, from which the pole positions of these
states were extracted. Given that the spin-partner states
Z,(10610) and Z,(10650) are located near the BB* and
B*B* thresholds, respectively, and that these hadronic
channels can couple to each other, a hierarchy of operators
was developed using a power counting, where the typical
momenta @ are associated with the coupled-channel
momentum scale between BB®) and B*B™), Q ~ Piyp =
\/mpgo, with § = mp. — mp representing the B* — B mass
difference. A very similar counting was employed in pion
production in nucleon-nucleon collisions, specifically the
reaction NN — NNz, leading to significant progress in
understanding the data [58,59].

In the analyses of Refs. [39,40], all diagrams up to and
including O(Q?) were incorporated in the effective poten-
tial except for two-pion exchanges. These one-loop con-
tributions contain information about intermediate-range
forces, and need to be considered for systematic uncertainty
estimates of the theoretical results and reliable extraction of
the pole positions of the Z,(10610) and Z,(10650) states
from data. In this work, we complete the calculation of
diagrams at order O(Q?) by deriving the missing two-pion
exchange operators.

The TPE operators at order O(Q?) consist of four
topologies: triangle, football, box, and crossed box (see
Figs. 4-11 for details). We provide closed-form expres-
sions for all of them, as detailed in Appendix C. We
also present the results for the effective potentials up to
O(Q?) for B¥) B scattering, a doubly bottom analog of
the doubly charm case investigated by the LHCb col-
laboration. Notably, we find that the sum of all triangle
diagrams vanishes for all BB transitions, while it
yields a finite result for B®)B*) case. An important self-
consistency check of the results is provided by renorm-
alization: The loop integrals are divergent and were
regularized using dimensional regularization. These diver-
gent parts must be absorbed by the counterterms in the
course of renormalization. However, because of heavy-
quark spin symmetry, at order O(Q?) there are only three
contact terms, while the number of allowed transitions is
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significantly larger. Therefore, after absorbing three
divergent contributions into the redefined contact terms,
no additional divergences should occur. We verified that
this is indeed the case. To ease the implementation of
the results for calculating observables, we present the
effective potential in the form of partial wave
decomposition.

Moreover, we show that the TPE potentials can be
largely represented by the contact term contributions,
suggesting that the incomplete NLO calculations pre-
sented in Refs. [39,40] already provided a fair repre-
sentation of the physics to this order, although a
calculation including the full NLO potential would
be desirable to find results for the pole parameters of
the Z, states and their spin partners with controlled
uncertainties.

Finally, it is important to note that, although the results
discussed here are presented for B-mesons, the heavy
meson mass does not explicitly enter the TPE operators
at the order we are working. As a result, these findings
are equally valid for coupled-channel D™D and
D™D scattering at the same order. The main difference
to consider is that, with a physical pion mass, the three-
body cuts in the TPE diagrams will contribute to the
imaginary part of the D-meson scattering amplitudes.
While these contributions are beyond the order we are
working here, they may become significant for high-
precision calculations, particularly in the context of
accurately extracting the width of the T.. state from

data [77]. Apart from that, we emphasize that the
differences between isovector and isoscalar JP =
1"DD*  potentials, attributed to isovector-vector

exchanges in Ref. [78], can be naturally explained by
the TPE contributions. We stress that the TPE contribu-
tions for D)D) scattering can be largely absorbed into
the O(Q?) contact interactions, with minor residual
nonanalytic contributions. This conclusion should also
hold for unphysically large pion masses, at least as long
as the corrections scaling as m2/ pfyp remain suppressed.
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APPENDIX A: CALCULATION OF PERTINENT
INTEGRALS

1. Calculation of triangle integral

A (I+q)-1
le= l/ (2m)* Iy —i€) [(1 + q)* — m2 + ie][I> — m2 + ie]
(A1)

Introducing Feynman parameters, shifting [ — [ — gx,
dropping all odd powers of / due to symmetry and using
q° = 0, one finds

/ / Al [dly
dx
271' l 0 )

P —g*x(1-x)
[(lo) -P-q x(1 —x)—mjzr—i—ie]z'

(A2)

Executing the [’-integration with the residue theorem
and setting € — 0,

2 —¢*x(1 —x)

d’l 2
/ / lz+qx(1—x)+m]3/2

Going to (D — 1) -dimensional spherical coordinates and
inserting p,

(A3)

_ 4-D 1
Iy = vz ﬂD—l
(4m)P2 T (B Jo

0 l ZD 2
X / dl—
0 -+ q*x (1-
Executing the [-integration and inserting D = 4 — &,

-1 1 5 3
« 16nZA dx{ <2q x(l—x)+ 2m,,>

2 2 1 — 2
X (———H/E— 1 —ln(4ﬂ)+ln<w)>
€

H

dx

“x(1 - x)
)+ m2P

(A4)

+2¢%x(1 — x) + m,z,} (AS)

Doing the x-integration, one finally obtains

1 ((5, 3 13, m
I = — g2 __T
v 16;:2{(12" o )R 367 "3
5 5, 4

+ (2 +3m2 ) n(22) + (22 +5m2 ) L(g)
6 u 6 3

2

P (5 135 5 \
- PR 40 L OGH),
16712{12 366"\ 4 S| gkl + 00
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where R and L(g) are given by
2

R:—E+yE—1—ln(47r). (A7)
4 2 2 4 2 2
Lig) = Vém: + g 1n<\/ m;+q +q>. (A8)
q 2my,
and yg is the Euler-Mascheroni constant.
2. Calculation of football integral
d*l (1%)
Iy, =i A9
o l/ (27)* [(1 + q)* — m2 + ie][I> — m2 + ie] (A9)

Introducing Feynman parameters, shifting [ — [ — gx,
dropping all odd powers of [ due to symmetry and
executing the [’-integration,

&l 1
/ / P+ gPx(1 = x) +mz]'/* (A10)

Going to (D — 1)-dimensional spherical coordinates and
inserting .,

\/7_1' /44_D 1
Iy =Y d
fb (4ﬂ)D/2F(D2—1) A X

00 lD—Z
X dl .
A [+ ¢*x(1 — x) + m2 + ie]'/?

(Al1)

Executing the [-integration and inserting D =4 —¢&

1
I = ——
1P 302

X <—§+y5—l—ln(4ﬂ)

(g

Doing the x-integration, we obtain

-1 q* m> 5 2m2
Ip=— A (L TRy 22 2
1b 162{ <1z+2> T30 T3

(5 w)o(3) (4]
(Sl ) o o

/1 dx(g*x(1 —x) +m32)
0

(A12)

2 6

3. Calculation of crossed box integrals

a. Iy,
@)

We encounter the [, integral in the crossed box
diagrams contributing to BB — BB, B*B — B*B, and
B*B* — B*B* and accordingly to the B"*) B*) counterparts.
The 1)

box INtegral is given by

0 _ i/ &l (41-92)°
box (22)* (I° = ie)[q3 — m3, + i€l qi — mj; + ie]
(Al4)
Expanding ¢7 = (1) — ¢} and ¢} = (I°)*—¢3 and

introducing the Feynman parameter x, one finds

o _ . ! &l
Ibox - ZA dx/ (2”)3 (ql 'q2)2

ar 1 1
" / PG v AP

2

where a*> = (g5 — q3)x + q; + m2. Executing [° integra-

tion gives

/0 _ / /d3l (41-92)°
box (43— a})x + g5 + m2]/?

(A16)

Shifting I — I+ p such that ¢; =p -1 — -l and ¢q, =

p —1— —l+q with g =p' —p,

d’l I-(-9)
I"‘”‘ N / / =21-q+q*)x +m2p?"

(A17)

Following the same steps as for the above integrals,

! 35 , 35 15

; dx{([—jx +2 l]q —|—2m>R
2¢*x*(1 —x)?
m2 +q%x(1 - x)

352 35 , 15
+<{ 2 +2 1}q+2mﬂ>

wfepes)

2 _ —1
Ibox _@

+ (=22x% +22x — 1)g* + 8m2 +

(A18)
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Performing the x-integration, one finally obtains

@ _ -l [(23, 15 5, 8
i —— ) >
box 16;;2{(12" Ty R4 Sat g

2
+ <—3q2 + 15m,2,> In <ﬂ)
6 JZ
(B B g
) L
_-23¢ [R5
—+1n L O@x*).
967 { Tt <ﬂ>+ (")}+ ")

(A19)

4. Calculation of planar box integral

As mentioned earlier, the IE)O)X integral splits into a

reducible and an irreducible TPE contribution. Because
the iterations of the OPE within the Lippmann-Schwinger
equation take care of the reducible part, it is omitted here

and one gets IE)O)X box [74], with the box integrals
defined in Egs. (31) and (33). For the sake of completeness,
below we provide a derivation of this result.

The starting point is the planar box integral

W L[ dl 1
Loy = 1 270 L 10
27)* [I° + ie][l° — ie]
(42 q1)°
[q5 — mz + iel[q] — m; 4 ie]”

(A20)

Expanding g7 = (I°)> — ¢} and ¢3 =
ducing the Feynman parameter x,

d'&
Ibox _l/ dX/ ql qz

o /dlo 1
27 [I° + 16] [0 —ie] [(Ip)* — a® + ie]?

(1°)* — g3 and intro-

. (A21)

g3)x +¢q3 +m2 In contrast to the

crossed box integral I](DO)X, the [O-integration diverges as
€ — 0, and our LO approximation of the heavy-meson
propagator produces nonphysical poles. We can avoid this
pinch singularity (the singularity is squeezed between +ie
and —ie), by including higher-order corrections to the
heavy meson propagator [82]. Specifically, including
O(Q?) terms, namely the kinetic energies of the heavy
mesons, shifts the poles in the heavy mesons propagators,
making them distinct and, consequently, avoiding the
singularity. This can be achieved by replacing ie — i{, with

where a* = (g3

(A22)

where k is the on shell momentum of the heavy mesons,
k*> = mgE. One finds

R O e e
IbOX - l/(; d.X/ (271_)3 (ql qZ) o0 [ZO + lé’] [lo _ ZC]
1

. A23
"2 =&+ ie]? (A23)
Executing [°-integration,
d’l 2L i 2a —il
= . (A24
=i, @ / ) =i MY

Expanding the fraction for a > i{ and dropping terms of
order O(¢),

.1 &l i3 2
II(JBXZIA dx/(271)3(q1'q2)24<a5+i§a4+0(§)>'
(A25)
(2)

The first term of the expansion is the integral /,; evaluated
in the previous section. The second term is the iterated
OPE, and the dropped term scales as (i¢)/a®. Since i¢ ~

pip/mp and a® ~ pg . the neglected term is suppressed as

O(pyyp/mp) ~ O(x?) relative to the leading one.
Inserting i = (k* — I? + i€)/2mp, one finds
I =1 + Al (A26)

where

1
Al = isz/ dx
0

" / &l (92 q1)°
(27)* (k> = I + ie][(q5 — q7)x + qf + mz)?
_ isz/ &l (a2 -q1)’ ’
(27)° [k = I + icllg3 + m3) (g} + m3)]

(A27)

which is the nonrelativistic version of the twice iterated OPE.
Indeed, the iterated potential can be written as [83,84],

) =— / &l Vo (¢’ D)V (L.p)
(27)* [k =P+,

V?Fr;E,it @'.p
(A28)

which is in agreement with (A27).

Since, we only consider irreducible contributions, we
drop this reducible term and keep track of the irreducible
integral Ibox instead. In summary, the treatment of the
planar box comes down to sign flip +ie — —ie for one of
the heavy meson propagators.
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a. Calculation of B*B* — B*B* and B*B* — B*B* pertinent loop integrals

The box contributions are identical for the B*B* — B*B* and B*B* — B*B* scattering processes. In total, one has eight
box diagrams and the resulting contribution is,

VtI’ig)Igi*aB*B* VB7.1 + VB7.2 + VB7.3 + VB7.4 + VC7.1 + VC7.2 + VC7.3 + VC7.4

4 d*l 3A-2(ty - 7,)B
_ gf (€1,i€*1<’_k€2,l€;’7n)i/ ( [ (T] TZ) ] (A29)

1613 2x)* Iy — ie]*[q5 — mz][q7 — m7]
where,
A =2[(92)(q1)i(22) (1)1 = (92):(q1)1(@2),(q1); = (92)1(q1)1(q2)1(q1), + (42)i(q1)i(92):1(q1),]
+25i(q2 - q1)[(92),(q1)1 = (92)1(q1),)] (A30)
and

B =26481,(q2 - q1)* + 261,(q2 - 41)*[(92)i (01); — (92)i(q1),] (A31)

The last term in A and the second term in B will vanish, due to tensor decomposition being symmetric. Solving the
remaining terms using tensor decomposition,

g' 1 1
X 2 4 5
Vb opp = 4f4 (€eri€] 1€2.€%, ){—(71 22)8u01 oy + 5 [Birdin = Gindid] [T — ook + = P2 5 (T = 1590)]
3

+ 4_q4 [qunéil - quléin + QiQIékn - qunékl][ E)o)x IE)O)X]} (A32)
where,
O / d*l 4143 @ / d'l 4i(g2-9)

oo (22)* (I = i€)*[q3 — m + iellqt —my +ie] " (2m)* (I — i€)* (g5 — m3 + ie][qt — m7 + ie]
d4l 2 )2
=i [ i (33
(27)* (I° = ie)*[q; — mz + i€llgy — mz + ie]

We will solve each of the three integral, starting with the Il(j))x integral. Expanding ¢? = (1°)>—¢? and ¢35 = (I°)>—q3,

using Feynman parameters and executing the [%-integration (and setting € — 0).

d3l q2q2
10
box - / / _ 12 5/2 (A34)
(27)° [(¢2° — q1)x + ¢} + m3]
Shifting I - I +p such that ¢y =p—1— —l and ¢, =p' —1 —» -1+ q with ¢ =p’' —p,
d3l P(l-gq)?
Ib0>x - / / 5/2° (A35)
=21 -q + q*)x + m2]

Following the same steps as for the earlier integrals, one finds

s -1 (15 , 1 1, 8, L oL\ (m\ (10, 1, 8m
1 = I 2m g )R- 42 5m2 —— g VIn(22) ¢ (Sm2 -2 )
box 167:2{(2 m2 12q +o @ Fymt | 15m; — 2" |In p g me - +4m,2,+q2 (q)

i (TRt g-gn(") 4L} + 00 (A36)

- 1672
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One proceeds in a similar manner for the integral Ibox (1(6) ) _ i/ d*l €ijs€nrm<Q2)j(41)s(%)r( )
4 o =1 )l — il - m3 + kel — 2+ ie]

L[ d'l

Iﬁox :l/<2ﬂ.)4 (A41)
1 o 2(g,-q) Repeating the same steps as in the earlier cases gives
X dx -
Ik e e e g@)
(A37) b / / a1l
- D lel]senrm
Executing the [°-integration, setting € — 0 and shifting I — (27
l4+psuchthatg, =p—1— —landq, =p' -1 - -1 +¢q, [lj+qj< - )](ls‘f'% W+ qr(x = D]y + gu)
) 2+ x(1 = x) + m2]2
d3l /- 2
box _l / dX/ [( q) q] 7 (A42)
-21-q+q*)x + m2*

(A38) Due to antisymmetry of the Levi-Civita tensor, most of the
numerator vanishes,

Solving the /-integration, inserting D = 4 — ¢ and doing

6 -3 4p [!
the x-integration, one finds (1 f,o)x)- = T/ﬂ b A dx
“4) _ -1 2 5 2 7 2 7 2 7 2 / dD_ll el]venrm(_lsCIj)(_lmqr)
I My ———=q° |R———q"—-m; . (A43
b 1627 {<2m 124 367 73" x 27)P71 [P + ¢*x(1 — x) + m2]>/? (A43)
+ <5m,2r __q2> In <ﬁ> Going to (D — 1)-dimensional spherical coordinates and
0 67 gm“ using [;1; — Zél, we get
—mi-ig+——" L _
+<3lez 6q +4m’25+q2) (Q)} ©) B _3\/7_[ ﬂ4D 1 5
(Ibox)in - D/2 1 /D—1 dx(5inq - QiQn)
4" 7 7 (m,\ 7 (4m)P2T (P54 Jo
TR in(") i) L+ oG .
1622 | 12 36 6 u 6 o0 D
x/ dl————2L= - (A44)
(A39) o [PHax(l-x)+m
Finally, performing the calculations along the lines given Doing the /- and x- integration and inserting D =4 — &,
above, one finds that the 11(32( integral is given by one finally finds
-1
—1 5 1 1 1Oy — T (5. g% — g,
Il(j))x — 167[2‘12{ (Emzzz _1‘12>R_E‘12 + 3,,”72Z ( box)m 1677:2 ( inq Qth)
m
1 X< —-R+1-2L —2ln<—”>}. A45
+ <2m,2[ ——q2> In (%> { @) JZ (A45)
6 H
7, 8, 8m?
—q°—= ——— |L 7
30 3t e g )9 ¢ (I )ik
¢t (-1 11 (m,\ 7 , We encounter this integral in B*B — B*B*, BB* —
~ 1622 {4R—12—6ln< U ) —|—3L(q)} +00") B*B* and in the subsequent BB counterparts. The
(A40) (I,(Qx)ikn integral is given by,
4
™) . dal
I . =
©) ( box)zkn l/ (271_)4
bl ((92)2(41); = (@)i(91))énum(42)u(41)
We encounter this integral in B*B — BB*, BB - B*B* X S
. (%) p(*) [0_16} [qZ_qul_m]
and in the subsequent B B'*) counterparts. The (Ibox)m

integral is given by, (A46)
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Introducing Feynman parameters, executing the [%-integra-
tion, and shifting I — I + p such that ¢; =p — I — —I and
g =p —1—- -1+ q withqg=p' —p:

_ 3
W= [ [ 21
(L= )i (D) = (1= @)i(D)enum (! = 9)u (D
[+ (=21 - q + ¢*)x + m2]? '

(A47)

All terms proportional to €,/ OF €qumqu9m and every
term of odd power in [ vanishes due to symmetry resulting
in

-3 1
800 = [ a
4 0
y / dD—ll (lk(Ii — liqk)enum(—lm%z)
Q)PP + (<21 q + ¢*)x + m2P/?
(A48)

Solving the remaining integral like in the earlier integral
yields

7 -1
( l(Jo)x)ikn = @ (enkMQuqi - eniMQqu)

x {—R+ 1 -2L(q) —21n(%> } (A49)

APPENDIX B: PARTIAL WAVE PROJECTORS

In this section, we have presented the complete set
of partial wave projectors used for calculating the
potentials [40]. In what follows, € refers to the polarization
vector of the heavy vector meson and n = p/p.

P(BB('Sy)) =1 (BI1)
PIBE () = =ler-e) (82)
PBB D)) =~ [3S0ry  (BY)

P(BE(S1), = ex. (B4)
P(B*B(®S))), = €14 (B5S)
P(BB*(°D))), = —%62,)0@, (B6)
PIBCDY), = =—5enm, (87)

P(B*B*(°Dy)), = —£i€hx

CichSary  (B9)

P(B*B*(*S))), = A, (B9)

P(B*B*(*Dy)),, = —%Axvhx (B10)

P(BB(' D),y = —\/ 20 (B11)
P(BB'(D,))., = - g 2 (comtry + ente)  (B12)
P(B'B(5S,),, = %sxy (B13)
P(B'B('Dy),, = —\@(el ‘e)v,  (Bl4)

_ 145 2
P(B*B*(sDZ))zy = - %(Szxvxy + Syxvxz - §6x3rSlxle>

(B15)
_ 1175
P(B*B* (SGZ))zw = 3—25xyvxyzw (B16)
where,
1
Vyy = Nyl — 55)0, (B17)
2
Sxy = €l,x€2,y + el,y€2,x - géxy(el : 62) (B]S)
i
Ax = Eexyzel.yelz (B19)
1
Uxyzw = HxNyN Ny, — ?( xny5zw + nxnz(syw

+ nyn,, by, + nyn, by, + nyn,o,, + n,n,oy,)

1
+ g <5xy5zw + 5xz5yw + 5xw5yz) (BZO)
The projectors are normalized as
dQ, .
/4—"P' (a,n)P(a,n) =2J + 1 (B21)
T

APPENDIX C: THE EFFECTIVE POTENTIALS

In this section, all the OPE and TPE potentials to
B®WB® - BB and B®B®) — BHBH) scattering
are presented.
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1. BB — BB

2

q 23, 1 5, 5 23, 1\ (m, 23, 1
=1 () RIS+ — By 2 —)1 L —
o (1 72){ [489 ol T \Gmd 7)) Flaad )l ) O

(C2)
2. BB — B*B*
- - g qq
VOPE(BB e B*B*) — _E( TZ)(GT/.kES/,n)q2 T mlzz (C3)
_ B} 3 My
Virs(B8 = B'B) = 12 06,63, )0u” — ) { R+ 1 =200 -2m(22) b e
3. B'B - B*B
VTPE(B B — B*B ) (61; €1)VTPE(BB i BB) (C6)
4. B*B — BB*
. - 9i4n
Vopre(B*B — BB*) = 4f2 (1-'1 75)(€5 €1 z)m (C7)
_ _ 3 m
Vipe(B*B = BB*) = ———g*(e% €1,;)(6nq* — ¢; —~R+1-2L(q) =2In{ = C8
(B8 = BE) = s e ) Gud? - ) { R+ 1-2200) - 2m(22) | oy
5.B*B — B*B"
. - g 4,9
Vope(B*B — B*B*) = i@ (74 '12)6ikr(€1$i67’,k€§’,n)qz j_ ;nn,zr (C9)

R ) . 3 * * ny
Vipe(B'B — B*B*) = lm94(61,i€1/,k€2',n)<€nkuf1u61i - Gniuqu%){—R +1-2L(q) -2In (7) } (C10)

6. BB* - B*B*

2

D * * RFY i qr4s
Vore(BB® — B*B") = 4f,, — 7 (T w2)ens (€€ 465, )q2+m721 (C11)
- — . * % m]T
Vipe(BB™ — B'B") = lW94(52,161’,k€2’.n)<€knu%4q} - €k1uunIn){—R +1-2L(¢g) -2In <7> } (C12)
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7. B*B* - B*B*

2

* ¥ * P¥) __ * * qrqS
Vope(B*B* — B*B*) = 4f — (1 'Tz)eikrems(61.561/,1{62,162/,”)m (C13)
2
* D% * D% q * * 23 1 5 5
VTPE(B B* — B*B ) = W(’tl "l'z)(€1 . €1;)(€2 . €2/){R|:48g + :| + (mg4 _7_2
m 23 1 3 1
In{ —= L
() (ot o) 10 (G + )}
2 4
g ) . -7 m, 15
+ 128227 (e1.i€} 1€2.1€5,) (OinOrs — 6i1On) {?R —5In <7) - TL(Q)}
g
+ W (61,1'6’1‘/,;(62,16;/.")[%%551 — k9160 + 9:960 — 4:9,0k1]
3
IR —2+41 4L 14
16{R + n<ﬂ>+ ()} (C14)
8. BB* - BB
9. BB - BB

4
g .
VTPE(BB = BB) 2f4 (’L’l 72) <_Ifb + gzlu- —_ El&;)

2
q 8,5, 1 5 , 13, 5 m\ (23, 5, |1
= — . —_—— —_— R 1 —_— —_— —_—— —_——
16ﬂ2f§(11 12){7%{489 249 2| T\qm? TR ) T )\ Y i

23 5 1

L _ 2 C17
+L )<249 7 12)} (€17)

10. BB - B*B*

2
Dk qkqn
VOPE(BB — B*B ) 4f2 (Tl 1'2)(61 k€2l )qz n mlzr (CIS)
3 my

VTPE(BB - B*B*> = 1287 2f4g (61/ 627 )(5knq2 - qkqn>{—R+ 1- 2L(q) —2In (7)} (Clg)

11. B'B - B*B
Vipe(B*B — B*B) = (€], - €1)Vrpe(BB — BB) (C21)
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12. B*B — BB*

7 qiq
Vope(B*B — BB*) = 4r2 (71 -rz)(ez/,nel,i)q‘ 2+ m2

3 my
Vripe(B*B — BB") = Wﬁf(e;,nﬁ,ﬂ(@nqz - qiqn){_R +1-2L(g) - 2In (7) }

13. B'B — B*B*

2

9 4r4n
4fz

¢ +m;

Vope(B*B —» B*B*) = — (71 T2)enr(€1i€] 1€ )

* * ok . 3 * * m;,
VTPE(B B — B*B ) = lWﬂ_zfig4(€l.iel’,kez/_n)(enkuquqi - etlithuqk){_R +1- 2L(Q) —2In <7> }

14. BB* — B*B*

g 9x9s
\% BB* - B*B*) = Ty - Ty)€ps (€0 €T €5 :
OPE( ) 4f”(1 2) lns( 2,1¢71 k©2, )q2+m,2[
* * D%k . 3 4 * * m”
VTPE(BB — B*B ) =1 128772‘](?[9 (62,161"](62’,")(eknuquql - €kluquqn) “-R+1- 2L(q) —2In 7

15. B*B* — B*B*

4,9;
q* + m?

VOPE(B*B* - B*B*) = (71 12)€ tkrelns(elzel x€2, 1€2r )

4f2

2
. . q By . 23 5 1 5 13 5
VTPE(B B* — B*B ) :W(TI '1'2)(6'1 ’61/)(62'62/){R|:4—8 4—ﬁg2—ﬁ + mg +7 +72

23, 5, 1 23, 5, 1
1 4 2 _ L _ 2
+ n( > (24 129 12) +La) (249 127 12)}

g =7 m, 15
W (61 i€ 1 x€2, 1621 )(5in5k1 - 5[15kn>{?7€ =5In <7> - TL(Q)}
4
+ T62/? (e1.i€} 1€2.0€5 ) [Akdnit = 4k 10 + 4i910kn — 9:GnOu1]
3
2R — 2—|—4ln< ) +4L(g }
<164 ") +41()

16. BB* — BB
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APPENDIX D: PARTIAL WAVE DECOMPOSITION

Here, we present the partial wave projected potentials for the rest of the channels, apart from with J*¢ = 0+, which is
given in the main text.

1. JPC=1++

CL+Ch+ (D, + D) (p* + p?) -Dipp? —V3Dly,p"

Ver ™ = -Di,p” 0 0 (D1)
—\/_DSDP 0 0
30 =080y = 0y) FZ(30,-0))
2
Ve = —f? (71 12) \/% 30, - Q)  —t(Vipe)n 0 (D2)
187—\/6 (3Qn - QZ) 0 % (Qx2 + Qx)
(Vope)e = 30w +30, =90, - 0, (D3)
(V%;:)n 83—\/594(‘/%;5)12 4\/—9 (V%Ha) 13
+ 1 ++ ++ ++
Vie = oz | a9 Vi Vil 306 (Vi (D4)
4%/2—494(‘/%;5)31 %94(‘/%;:)32 (Vire)s
where,
++ G 94 my
Vo =S+ 5 (02 4 p2)|-R+ 1= 21 (7)] -2, p)} (D3)
1+ 1++ 2 2 ’
(Vire)iz = (Vipp)i3 = g( ) -R+1-2In ,U +3 Rz(P p) = 2R, (p',p) (D6)
1+t 1+ 2. 5 2 /
(VTPE)ZI = (VTPE)31 = 5(1’ ) -R+1-2In ,u + 3R2<P p)— 2Rn(17 . D) (D7)

3 1
3 {Ro(p/, p) = 3Ry (p'.p) +3R.(p'.p) =Ry (p'.p) = R,(P'. p) + 3R (r'. p)} (D8)

(Vipg)n = S2 + ¢*
++ ++ 2
(V"ll‘PE)23 - (V%’PE) 32 = 3 R (p p) + 3R (p p) Rn’(p/v p) - Rn(p/v p) - sz(p/’ p) (DQ)

4
. _ gt (45 135 7
(V%pE)33=7Sz+Z{7Rz(P’, )—7R2(P P)—E(15R (p'.p) +15R,(p'. p) + 8R,(p'. p) —45R.(p'. p)

- 9Ra(0') (D10)
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2. JPC=1+—

Cy+Dy(p* + %) Dipp” €}

V1C+T— _ DgDP2 0
Ch+Di(p* +p?) Dgpp” C

DL, p? 0

-10, ﬁ@Qn’ -0,)

#5030,-02)  —¢(Vi)n

Viee = _W(Tl 1)

+Di(p*+p?) Dipp”
Dspp? 0

+Di(p* +p?) Dipp”
DL, p? 0

3Qn’ - QZ)

Vore)

20, \/%
—+=(30,-0,)
\/ﬁ n 2

oo

(
(

F 20, ﬁ (30, — Q) -10, ﬁ (30, — 0»)
500, -0 (Vo  502.-0) —§(Vope)n
where,
(Vipe)a = 3Qu(p'. p) +30x(p'. p) = 90:(p'. p) = Q2 (p'. p)
1+- 1 / 1 i 3 ! 3 / 2 /
(Vope)2s = iQn(p .p)+ an’(P .P) = EQX(p .p)+ EQXZ(P D) = §Q2(P .P)
(Viee)is ﬁgd‘(‘@&)u (29") (Vier)13 8\/—9 Y(Vipg)ia
1+ 1 %94(‘/%;:)21 (V%;:)zz 8\/'9 *( TP;:) 19 (VTPE>24
TPE = T4 274 +— _ + -
167°f7 [ (26")(Vipe)as 8_\/3594(V”}“PE>32 (Virg)s3 ﬁgét(v%ﬂs)%
%94(‘/%;:)41 %94(‘/%;:)42 16\/—9 4 (Vipg)as (VIpE)as
where,
. - g m,
(Vipe)it = So —Z{(P'Z +P2)[ R+1 —2111(7)] 2Ry(p', p }

[SSI )

(V”FI;E)IZ = <V”H>;5)14 = (V%Ea)n =

1

(p’z){—R+1—21< )] R(P'.p) = 2Ry (P, p)

(Vhihs = Vs =07+ 97) [ =R+ 1=21n("2) | 28,001, p)

(Vipg)ar = (Vipg)as =

. _ 3
(Virg)n =8 - g“g {Ro(p’, p)=3R..(p',p) +3R.(p'.p) =R, (P, p) —R,(P. P)

_ _ 9
1+ 1+ !
= =-R
(VTPE)24 (VTPE)42 4 XZ(P ’P) 4 4

94

(V”ll“;;:)% =S - ) {—2(172 + p?)R +2(p* + p"?)

034042-30

(VH»}:)M:%( ){ R+1—21< >]+ Ry(p'. p) = 2R, (p'. p)

3

27 9 9 3
__Rx(p/’ p) +_Rn’(p/7 p) +_Rn(p/v p) __RZ(plv p)

4 2

—4(p* + p” )ln<n;> 4Ry (p', P)}

1
+_R2(p/’ p)

(D11)

(D12)

(D13)

(D14)

(D15)

(D16)

(D17)

(D18)

(D19)

(D20)

(D21)

(D22)
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(Vs = 207 [zR 24 41n< : )] L ABR(p p) = Ra(p'. p) (D23)

(Vipp)as = 2p° [273 2—|—4ln( )} +4[3R,(p'. p) = Ry(P'. )] (D24)

u

N g (15 45 21 8
(Vipg)as = =S+ 16 {ij(p’, p)— 7sz(p’, p)+ - <2Rn(p’, p)+2Ry (P, p) - ng(p’, p)—6R.(p', p)
+6sz<pap>)} (D25)
3. JPC=2++
0 0 ~\/iDhpp? 0 0 0
0 0 - 3Dl p? 0 0
yies _ | =\fEPhor? ~35Dhep® ChtCht (DL DI +pR) ~ s Dhpr” / DSDp 1 (o)
0 0 — % Dipp? 0 0
0 0 \/DSDp 0 0 0
0 0 0 0 0
2
o+ g
V%)PE 4 f;zr (71 Tz)
0 0 1(30,-0) =(30:-0,) -LK -2 K
— a0\ — ) By 2 a1 s /560 216
1 1 1
0 0 \/__( Qn’_Q2) 0 \/ﬁKZS —mK26
~ 75030 -02) /5630, - Q) ~ 50 5500,-0) —\/H(30,-0) 0
X
F0e-0) 0 KBO-0) 460e-0)  FHKs gk
_\/%—IKSI \/ﬁKsz —\/920(3Qn'—Q2) \/%KM 2 Kss —ﬁgl(
_\/%EK“ \/11100K62 3\/—K64 _ﬁgl{ﬁs L Kes
(D27)
where,

Ks; = Kis =302 =90, +30, + 30, =20, (D28)
Ko =350, = Qp +200, =50, +20, + 0, (D29)
Ky =350, — Qp +200, =50, + 20, + 0> (D30)
Ks; = Kys =180, — 180, + 60, + 60, + 80, (D31)
Ko =35Qy0 =50 =200, =50, +20, + 0, (D32)
Ky =350, =50 =200, =50, +20, + O, (D33)

(D34)

Ksy = Kys =30, — 0, +30, +30,-20,
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Koy =35Qy0 =350 — 1400, =50, +20, + O,
Ky6 = 350,02 =350 — 1400, = 50, + 20, + O»
Kss = =802+ 110, - 6(Qy + Q,) + 70>
Kes =350, =300 +200, =50, +20, + 0,
Kse =350, =500 +200, - 50, +20, + 0>
Koo = 2450, = 105(Q, 0 + Q) + 1502 + 15(Q + Q) + 50, — 30,

Vi = T
(Vi) 0 (Vi R0 (Vi 226 (Vim)is
0 0 8\/—9 *(Vipe)2s 0 V_g *(Vipe)as
) P VhDn me Vhen (Vs s (Vi 2050 (Vi)
\{;_94(‘/%;3)41 0 #94(‘/%;5)43 (Vive)as mg *(Viee)ss
W (Vimds  57m9 (Vi 0 (Vs om (Viss  (Vi)ss
32\}ﬁg4(v%;;3)61 1459 (Vire)e 0 ﬁgﬁ(‘@%)m ﬁg“(v’ﬁ;}i)ﬁ
where,

(V”zr;:)n = 52(17/,17)

+ 2 2
(V%;a)m = (V%PE)B =3P [ R+1-2In <,u )} +3 Rz(P P) 2Rn(P/,P)

37

(Viehs = (Vdpp)as = 3R2(p'. p) = 9Ry.(p'. ) + 3Ro(p'. p) — Ra(p'. p)

++ ++ 2
(V”ZFPE>15 = (V%;:)zs = (V”ZFPE>51 = (V%;:)sz = §R2(P', P) + 3RX(P'7P) - Rn(PlJ’) - Ry (P’J’)

(D35)
(D36)
(D37)
(D38)
(D39)
(D40)

32\}W 4(‘/%‘;’%)
ﬁi—og (Viee)as
0

2++

16_\/33—5 9" (Viee)as

3 Ayt
2439 (Viipe)se

(Virg)ss

(D41)

(D42)
(D43)

(D44)

—Rpo(p'.p)  (D45)

(Vapp)ie = 63R,2(p', p) = 90R 2 (p', p) — 360R,(p', p) —90R,,(p', p) + 36R,(p', p) + 18R, (p', p)  (D46)

(V3pg)as = 35R,2(p'. p) —=SR2(p'. p) = 2R, (p'. p) = 5Ry(P'. p) + 2R, (P'. p) + R2(p'. p) (D47)
2++ 2+t 2 2’ /
(Vipe)s1 = (Vipe)s = 3 ~p?*|-R+1-2In ﬂ + 3R2(P p)—=2R,(p'.p) (D48)
T+ = 94
(Vipg)ss = So + N {—2(172 + p?)R +2(p* + p”?) —4(p* + p”) ln< p > 4Ry (p/, p)} (D49)
- o my
(VE)sa = (VEob)as = 20 [m 244 (ﬂ)} FABR(p p) — Ro(pl. )] (D50)
++ ++ my
(Vi = (Viie)ss = 27 [zvz 244 (7)] AR, (. p) ~ Ralp p)] (Ds1)
. _ g (45 15 7 21
(Vipp)as = S2 + % {ERXZ(P', p)— 7&(175 p) +§R0(P/’ p)— ?sz(l?’, P)} (D52)
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++ 7
(V%;]ri)45 = (V%PE>54 5[3Rn(p/7 p) +3Rn’(p/7 p) _9Rx(p,7 p) +3Rx2(p/v p) _2R2(p/7 p)] (D53)
++ + 7
(V3pp)as = (Vipp)se = — 3 [35R, (P’ p) = 5R,(p'.p) = 20R(p'. p) + Rao(p'. p) + 2R, (p'. p) = 5R(p'. p)] (D54)
Vi) =S 15 4—5R ! —9R.(p'.p)=9R, (p', p) = 51R-(p' 27R.(p’
(Vipe)ss 2+16 > Ry(p'.p) ——Re(p'.p) - ( (P p) 2 (P p) 2 (P, p) +27R(p', p)
420Rzuf,p>>} (D55)

(VZpg)e1 = 63R,2(p'. p) —90R2(p'. p) — 360R,(p', p) —90R,,(p'. p) + 36R, (p'. p) + 18R, (p’. p)  (D56)

(Vipe)er = 35R,(p', p) = 5Ra(p', p) = 2R.(p', p) = 5R.(p, p) + 2R (P, p) + Rao(P'. ) (D57)
(Viee)ss = (Vipg)ss [35Rm (p'.p) = 5R,(p'.p) = 20R.(p'. p) + Ry(p'. p) + 2R (p'. p) = SR (p'. p)]  (D58)
(Vipe)ss = Sa = fg [35R (P, p) = 30R(p', p) + 3Ra(p', p)] +ng42 {—%(105Rn/xz(p’, p) +105R,(p', p)
—I5R,(p'.p) = I5R,(p'. p) +45R.(p'. p) + 3Ry(P', p) = 15R2(p', p) — 245R,,v,2 (P, P))} (D59)
and
R T I NERIE INC )
+L(q) @iff‘ + ]12> } (D60)

All the Q and R functions mentioned above are functions of p and p’ [as in Q(p’, p)], but for simplicity reasons the
(p', p) was avoided.

APPENDIX E: CALCULATION OF INTEGRALS OF PARTIAL WAVE DECOMPOSITION

The calculations of integrals from partial wave decomposition are shown here. Specifically, we present the integration of
0, R, S, and T terms encountered in the partial wave decomposition here. The following notation is used below: |p’| = p/,
lp| = p.lg| = g, m =p/p, 0 =p’/p’. In addition, g> = p’> + p?> —2p’px and n’ - n and

p/2 _ p2 _ q2
g=px—p=L_2 71 El
n-q=px—p 2 (E1)

P2—p? g
n.g=p -px=r—0=r_19 (E2)

2p'
1. Q-integrals
ldx ¢°
'p)=[| Z——as=14+0u" E3
00 = [ Gt = 1+00) (E5)
ldx (n-q)* pP+p (0 -p) 2p'p

Qn(P/, p) — /_1 ?qz n m2 =1- 4p2 + 8p/p3 arctanh m + O(){4) (E4)
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ldx (n' - q)? p?+p* | (=p”+p?)? 2p'p
(pop) = [ = —1- tanh(——LL ) 4 o ES
Cnlp-p) /_12q2+m% W s ) TOY ")
ldx(n' -q)(n-q)x 5 p“+p* ((p”-p»)*)(p?+p?) 2p'p
/’ — o — - _ tanh| ———— O(y* E6
O.(p'.p) /-1 2 ft+md 127 8p2p2 + 1693 p? arctan 2+ PP+ m2 +O(¢*) (E6)
ldx (g°x*) 1
0ur'.r) = [ S =5+ 00 (E7)
ldx (n-q)*x*  p*(5p?) -p°=p° -p*  (p*=p") 2p'p
' p) = = — tanh(| —¥———— O@*
Q,2(r'. p) /_1 2 F1m 16972 +48p2p,2+ 3205 arctan Pt md +O0@")
(E8)
Ldx(n'-q)*x*  p*(5p*) =p°-p°  -p* (p"-p*)? 2p'p
/ / = _— — t h R S O 4
Qe (P, ) / 12 ¢ +m; 16p°p" Tagprp 32597 O\t pP et ml oW
(E9)
p p / a; n q) 3 _ _zp/() _p4<2p/2) 59p/2 N _p8 _p/S
2 ¢ +m 48 p' p? 240p'>  32p'*p*
((p? =p*)(p” + p*) 2p'p 4
+ 64p" p’ arctanh Pt R ml +O(*) (E10)
2. R-integrals
Since ¢> = p> + p*> — 2p’'px, we can substitute x inside the R-integrals
dx q
LB (E1)
PP

In the following, ¢ is relabeled as p to avoid ambiguity between the transferred momentum and the integration variable.
The limits of integration are

xp=1=p,=p'—p (E12)
Xg==1=p,=p' +p (E13)
The R-integrals are now written as,
I dx 1 Pl+p 1 '
Ro(p'.p)= | =L(q) = L(p) = PP L Ot El4
0.0 = [ Gl =5 [ dosto) = =5+ o LI + 00 (B14)
1dx 1 [P+p -1 [p* p'+p
R,(p', :/ — 4> = / dpp’L(p {——p“Lp] + O El5
2(P'. p) 2 (9) )y () = S5p (p) . ") (E15)
1 dx p6 p4p
Ry(p', :/ —q*L(q) = [——+ oL } + O(y* E16
4(P'. p) 21 (9) 2yp| 617 (p) - ") (E16)
1 dx 1 P8 p'+p
Re(p', :/ —¢°L(q) = - [—— 8L } + Oy E17
(P, p) 21 (9) 6pp |8 ” (p) - (") (E17)
1 dx 1 [=pl0 210 P+p
Rs(p'.p)= | —q°L(q) = L O(y* E18
o= [[5ete =g |55+ 1) o (E18)
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x _12 12 P4p
Rulor) = [ GaoLio =5 [T+ 50| ou (E19)
Rulp'-p) = /_i % (n-q)°L(q) = 8p1/p3 /pp_:p dp(p* =2p*(p"* = p*) + (P = P*)*)p - L(p)
= ﬁ (Ry(p'.p) =2(p"* = P*)R2(P'. p) + (P = P?)*Ro(P'. P)) + O(r*) (E20)
Ro(pop) = [ S0 0Lla) = o R0 )+ 200 = IR p) + (7 = PP Rl p)) + OG*)  (E2D)

R(pp) = [ 5 a)n L (a) = s (Relrl )= (0 4 PORAP p) = (07 = P2 PR )

+(p? = p?)*(p"* + P*)Ro(P'. p)) + O(x*) (E22)

ldx 1
Ra(p'.p) = / 1 7q2x2L(Q) =4 (Re(p'. p) =2(p"* + P*)Ra(p'. p) + (P* + P*)*Ra(p'. p)) + O(x*)  (E23)

Rau(pl. p) = / M or(g) = ﬁ (Re(p'. p) = 20" + pYRA(P D) + (P2 + PRo(p. ) + OGFY)  (E24)

1
= T6pi (Rio(p'. p) —4(p"* + pH)Rs(p'. p) + 6(p"* + p*)Rs(p'. p)

—4(p? + pP)’Ry(P'. p) + (P + PP)*Ra(P. p)) + O(x*) (E25)
Ldx
R,2(p.p) = / a7 (n-q)x*’L(q) = 6 (Rs(p'. p) —4p"*Re(p'. p) + (6p™ — 2p*)R4(p'. p)

+4p(p" = p)Ra(P'. p) + (P = P*)*Ro(p'. ) + O(*) (E26)

1dx 1
R, (p'.p)= /1 7(”/ -q)x*L(q) = W(Rs(l?/, p) —4p*Re(p'. p) + (6p* —2p"*)R4(p'. p)

+4p*(p* = P )Ry (P, p) + (p* = P"*)*Ro(p'. p)) + O(x*) (E27)

Ldx
R (P/, P) = /-1 7(”/ : ‘1)(" : ‘I)X3L(CI) = W(Rlo(l’/v p)— 3(17/2 + Pz)Rs(P/y p)
+2(p* +4p”p* + P )Re(p'. p) +2(p° = 3p"2p* = 3p"*p* + p'*)Ry(p'. p) = 3(p* — p'*)*Ra(p. p)
+ (p? = P (p*+ P*)*Ro(P'. p)) + O(x") (E28)

L(p) is given by,

4 2 2 4 2 2
L(P):\/ Mz P ln<\/ Mz -1 +p> (E29)
p 2m,

3. S-integrals and S-integrals

The S-integrals can be written in general as,

_ Ldx 23 1 5 5 m 23 1 23 1
/ — P . 2 4 4 _ 1 n 4 L 4
Si(p'.p) /_12 1 (X)(T1 - T2)q {Rng +24] + (1449 72) + n(ﬂ ) (249 +]2> + (q)<24g + 12)}

(E30)
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where P;(x) denotes the kth Legendre polynomial.

my

So(p',p) = (rl-rz){R(p’2+p2)(§ig +214> +(p’2+p2)<li4g —75—2> +(p’2+p2)<§ig +112)1 (7)
+Ry(p, p)<§i 4 %)} (E31)

In the case of S,(p’, p) and S,(p’, p), with the exception of L(g) terms, every other term vanishes after the x-integration.

=t [ o )

=(§;,2p2{<3R6 6™ + IR+ B0+ 7~ (et 5) b )

5.0p) = (n ) [ 1‘?(W>L<Q>q (53”112)

= 1(;8119/22’34 { |:(35P + 35p'8 + 20p p/2 + 18p p'4 + 20[)2 ’6)R2 + (210P4 4 300172 2 + 210p/4>

23 1
— (140p? + 140p"*)Rg — (140p° + 180p*p'> + 180p%p ’4+140p’6)R4+35R10} <24g +12>} (E33)

The S-integrals are given by,

Ldx 23 5 1 5 13 5
S /’ — =-=p . 2 R|I== 4_ - 2 - = -
«(r'.p) /_1 5 Prl)(m rz)q{ [489 229 24} + <144g +55¢° +72>

23, 5, |1 23, 5 1
1 4 =~ 2 L _ 2__ . E34
i n( )(24 127 12) i (‘I)<24g 127 12)} (E34)
Starting with Sy(p’, p),
23, 5, 1 5 13, 5
! _ . 2 2 - 2 _ - /2 2 - 2
So(p'p) = (7 ’2){R<1’ TP )(249 249 24)+(p P )<144g Y +72)

23, 5, 1\ (m 23, 5, 1
” 2 -~ f——)|In(—= R, - -— E35
T+ )<249 129 12) n<u>+ (249 127 12)} (E33)

Similar to the earlier case [S,(p’, p), S4(p’, p)], only the L(g) terms contribute in S,(p’, p) and S4(p', p).

Ldx (332 —1 23 5 1
/ — . - L 4 _ = 2__
S:(p'.p) = (11 fz)/_1 5 ( 7 > (9)¢* <24g 39 12)

_(11 ) 12 2 12 2 72 2 23 5 1
=gy | PRe 0"+ PR+ ((p +p?)? =4 PR (39 -5 5 (E36)

dx (35x* —30x% + 3 2, 5 1
'p) = . = "L R
Sa(p'.p) = (71 72) /_] > ( g ) <q)q (24g Y 12)

_ (t1-72)
128p/4p4

{[(35p8 +35p'8 +20p°p"> + 18p*p'* +20p?p'*)R, + (210p* + 300p>p'> + 210p'*) Ry

23 5 1
— (140p? + 140p"?)Rg — (140p® + 180p* p'? 4+ 180p? p'* + 140p'®)R, + 35R ] (249 - Eg2 - E) }

(E37)
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