| Hauptseite > Publikationsdatenbank > Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells > print |
| 001 | 1040384 | ||
| 005 | 20250414120448.0 | ||
| 024 | 7 | _ | |a 10.1002/chem.202404251 |2 doi |
| 024 | 7 | _ | |a 0947-6539 |2 ISSN |
| 024 | 7 | _ | |a 1521-3765 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-01871 |2 datacite_doi |
| 024 | 7 | _ | |a 39807597 |2 pmid |
| 024 | 7 | _ | |a WOS:001407710600001 |2 WOS |
| 037 | _ | _ | |a FZJ-2025-01871 |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Caicedo-Reina, Mauricio |0 0000-0002-0014-0041 |b 0 |
| 245 | _ | _ | |a Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells |
| 260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1741865964_25095 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Perovskite solar cells (PSCs) have recently achieved over 26 % power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like Spiro-OMeTAD and PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost. This study explores the potential of iminodibenzyl, a moiety known for its strong electron-donating capabilities in pharmaceutical applications, as a novel HTM. A series of fluorene-based derivatives incorporating iminodibenzyl (TMF-2 and TDF-2) and diphenylamine (TMF-1 and TDF-1) units were synthesized and characterized. The new HTMs demonstrated commendable optical, electrochemical, and thermal properties, as well as enhanced photostability. Among them, TDF-2 achieved a power conversion efficiency (PCE) of 19.38 %, the highest of the new materials. Although these efficiencies are slightly lower than the benchmark PTAA (20.20 %), the study underscores the potential of iminodibenzyl to enhance photostability and increase HOMO levels, making it a promising candidate for future HTM development in PSCs. |
| 536 | _ | _ | |a 1213 - Cell Design and Development (POF4-121) |0 G:(DE-HGF)POF4-1213 |c POF4-121 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Rocha-Ortiz, Juan S. |0 P:(DE-Juel1)201567 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Wu, Jianchang |0 P:(DE-Juel1)192542 |b 2 |
| 700 | 1 | _ | |a Bornschlegl, Andreas J. |0 0000-0001-9992-5449 |b 3 |
| 700 | 1 | _ | |a Leon, Salvador |0 0000-0002-2757-9417 |b 4 |
| 700 | 1 | _ | |a Barabash, Anastasia |0 0000-0003-1732-1233 |b 5 |
| 700 | 1 | _ | |a Dario Perea, Jose |0 0000-0001-7669-7797 |b 6 |
| 700 | 1 | _ | |a Wang, Yunuo |b 7 |
| 700 | 1 | _ | |a Arango-Marín, Vanessa |0 0000-0001-9797-8280 |b 8 |
| 700 | 1 | _ | |a Ortiz, Alejandro |0 0000-0002-4392-9456 |b 9 |
| 700 | 1 | _ | |a Lüer, Larry |b 10 |
| 700 | 1 | _ | |a Hauch, Jens A. |0 P:(DE-Juel1)177626 |b 11 |
| 700 | 1 | _ | |a Insuasty, Braulio |b 12 |
| 700 | 1 | _ | |a Brabec, Christoph |0 P:(DE-Juel1)176427 |b 13 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1002/chem.202404251 |g p. e202404251 |0 PERI:(DE-600)1478547-X |n 13 |p e202404251 |t Chemistry - a European journal |v 31 |y 2025 |x 0947-6539 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1040384/files/Chemistry%20A%20European%20J%20-%202025%20-%20Caicedo%E2%80%90Reina%20-%20Comparative%20Study%20of%20Iminodibenzyl%20and%20Diphenylamine%20Derivatives%20as%20Hole.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1040384 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)201567 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)192542 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)177626 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)176427 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1213 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a DEAL: Wiley 2019 |0 PC:(DE-HGF)0120 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2025-01-02 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-02 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2025-01-02 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM-EUR J : 2022 |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-02 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IET-2-20140314 |k IET-2 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|