001040442 001__ 1040442
001040442 005__ 20250414120458.0
001040442 0247_ $$2doi$$a10.1038/s41467-025-56514-5
001040442 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01900
001040442 0247_ $$2pmid$$a39915489
001040442 0247_ $$2WOS$$aWOS:001416001300001
001040442 037__ $$aFZJ-2025-01900
001040442 082__ $$a500
001040442 1001_ $$0P:(DE-HGF)0$$aKetter, Lukas$$b0
001040442 245__ $$aUsing resistor network models to predict the transport properties of solid-state battery composites
001040442 260__ $$a[London]$$bSpringer Nature$$c2025
001040442 3367_ $$2DRIVER$$aarticle
001040442 3367_ $$2DataCite$$aOutput Types/Journal article
001040442 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744265587_6844
001040442 3367_ $$2BibTeX$$aARTICLE
001040442 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040442 3367_ $$00$$2EndNote$$aJournal Article
001040442 500__ $$afinancial support within the cluster of competence FESTBATT funded by Bundesministerium für Bildung und Forschung (BMBF; projects 03XP0597A)
001040442 520__ $$aSolid-state batteries use composites of solid ion conductors and active materials as electrode materials. The effective transport of charge carriers and heat thereby strongly determines the overall solid-state battery performance and safety. However, the phase space for optimization of the composition of solid electrolyte, active material, additive is too large to cover experimentally. In this work, a resistor network model is presented that successfully describes the transport phenomena in solid-state battery composites, when benchmarked against experimental data of the electronic, ionic, and thermal conductivity of $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2-Li_6PS_5Cl$ positive electrode composites. To highlight the broadness of the approach, literature data are examined using the proposed model. As the model is easily accessible and expandable, without the need for high computing power, it offers valuable guidance for experimentalists helping to streamline the tedious process of performing a multitude of experiments to understand and optimize the effective transport of composite electrodes.
001040442 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001040442 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040442 7001_ $$0P:(DE-HGF)0$$aGreb, Niklas$$b1
001040442 7001_ $$0P:(DE-HGF)0$$aBernges, Tim$$b2
001040442 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b3$$eCorresponding author$$ufzj
001040442 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-025-56514-5$$gVol. 16, no. 1, p. 1411$$n1$$p1411$$tNature Communications$$v16$$x2041-1723$$y2025
001040442 8564_ $$uhttps://juser.fz-juelich.de/record/1040442/files/revised_Manuscript.pdf$$yOpenAccess
001040442 8564_ $$uhttps://juser.fz-juelich.de/record/1040442/files/s41467-025-56514-5.pdf$$yOpenAccess
001040442 909CO $$ooai:juser.fz-juelich.de:1040442$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001040442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b3$$kFZJ
001040442 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001040442 9141_ $$y2025
001040442 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040442 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
001040442 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
001040442 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001040442 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040442 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
001040442 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001040442 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001040442 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001040442 980__ $$ajournal
001040442 980__ $$aVDB
001040442 980__ $$aUNRESTRICTED
001040442 980__ $$aI:(DE-Juel1)IMD-4-20141217
001040442 9801_ $$aFullTexts