001040455 001__ 1040455
001040455 005__ 20250804115248.0
001040455 0247_ $$2doi$$a10.1021/acs.energyfuels.4c05818
001040455 0247_ $$2ISSN$$a0887-0624
001040455 0247_ $$2ISSN$$a1520-5029
001040455 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01907
001040455 0247_ $$2pmid$$a40040731
001040455 0247_ $$2WOS$$aWOS:001433736000001
001040455 037__ $$aFZJ-2025-01907
001040455 082__ $$a660
001040455 1001_ $$0P:(DE-Juel1)177607$$aLebendig, Florian$$b0$$eCorresponding author$$ufzj
001040455 245__ $$aInfluence of Biofuel Blending on Inorganic Constituent Behavior and Impact in Fluidized-Bed Gasification
001040455 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2025
001040455 3367_ $$2DRIVER$$aarticle
001040455 3367_ $$2DataCite$$aOutput Types/Journal article
001040455 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750773770_12430
001040455 3367_ $$2BibTeX$$aARTICLE
001040455 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040455 3367_ $$00$$2EndNote$$aJournal Article
001040455 520__ $$aA promising technology for producing carbon-neutral fuels is fluidized-bed gasification of biomass. In combination with chemical looping gasification (CLG), the process becomes even more efficient. However, using biomass-based fuels can lead to significant ash-related issues, including bed agglomeration, fouling, deposition, slagging, and high-temperature corrosion. To address these issues, several biomass upgrading approaches are used to improve the quality of the feedstock for gasification. These approaches include torrefaction, water leaching, and blending with different additives. This study focuses on the influence of additives and biomass co-blending with low-cost biofuels on the behavior of inorganic constituents and under gasification-like conditions at 950 °C and the corresponding impact in fluidized-bed gasification. For example, blending (upgraded) barley straw with 2 wt % CaCO3 resulted in a decrease in slag and a corresponding increase in the proportion of solid oxides. This indicates that thermal stability can be expected at operating temperatures up to 950 °C. Similarly, adding Ca/Si-rich biowaste components increases the ash softening point of herbaceous biofuels. Furthermore, the results show that adding Ca-based or woody biofuel components has a chemical effect on the fate of volatile inorganics. For example, increasing the concentration of calcium in the fuel significantly reduces the release of HCl and partially reduces the release of sulfur species, thus reducing the corrosion risk. These results contribute to the development of more efficient and cleaner biomass gasification processes for producing carbon-neutral fuels.
001040455 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
001040455 536__ $$0G:(EU-Grant)817841$$aCLARA - Chemical Looping gAsification foR sustainAble production of biofuels (817841)$$c817841$$fH2020-LC-SC3-2018-RES-SingleStage$$x1
001040455 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040455 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b1$$ufzj
001040455 773__ $$0PERI:(DE-600)1483539-3$$a10.1021/acs.energyfuels.4c05818$$gVol. 39, no. 8, p. 3868 - 3881$$n8$$p3868 - 3881$$tEnergy & fuels$$v39$$x0887-0624$$y2025
001040455 8564_ $$uhttps://juser.fz-juelich.de/record/1040455/files/Manuscript.pdf$$yOpenAccess
001040455 8564_ $$uhttps://juser.fz-juelich.de/record/1040455/files/lebendig-m%C3%BCller-2025-influence-of-biofuel-blending-on-inorganic-constituent-behavior-and-impact-in-fluidized-bed.pdf$$yOpenAccess
001040455 8767_ $$d2025-03-12$$eHybrid-OA$$jPublish and Read
001040455 909CO $$ooai:juser.fz-juelich.de:1040455$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001040455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177607$$aForschungszentrum Jülich$$b0$$kFZJ
001040455 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b1$$kFZJ
001040455 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
001040455 9141_ $$y2025
001040455 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001040455 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001040455 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001040455 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001040455 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001040455 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001040455 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07
001040455 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040455 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG FUEL : 2022$$d2025-01-07
001040455 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001040455 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001040455 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040455 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERG FUEL : 2022$$d2025-01-07
001040455 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001040455 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
001040455 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001040455 920__ $$lyes
001040455 9201_ $$0I:(DE-Juel1)IMD-1-20101013$$kIMD-1$$lWerkstoffstruktur und -eigenschaften$$x0
001040455 980__ $$ajournal
001040455 980__ $$aVDB
001040455 980__ $$aUNRESTRICTED
001040455 980__ $$aI:(DE-Juel1)IMD-1-20101013
001040455 980__ $$aAPC
001040455 9801_ $$aAPC
001040455 9801_ $$aFullTexts