001     1040455
005     20250804115248.0
024 7 _ |a 10.1021/acs.energyfuels.4c05818
|2 doi
024 7 _ |a 0887-0624
|2 ISSN
024 7 _ |a 1520-5029
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01907
|2 datacite_doi
024 7 _ |a 40040731
|2 pmid
024 7 _ |a WOS:001433736000001
|2 WOS
037 _ _ |a FZJ-2025-01907
082 _ _ |a 660
100 1 _ |a Lebendig, Florian
|0 P:(DE-Juel1)177607
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Influence of Biofuel Blending on Inorganic Constituent Behavior and Impact in Fluidized-Bed Gasification
260 _ _ |a Columbus, Ohio
|c 2025
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750773770_12430
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A promising technology for producing carbon-neutral fuels is fluidized-bed gasification of biomass. In combination with chemical looping gasification (CLG), the process becomes even more efficient. However, using biomass-based fuels can lead to significant ash-related issues, including bed agglomeration, fouling, deposition, slagging, and high-temperature corrosion. To address these issues, several biomass upgrading approaches are used to improve the quality of the feedstock for gasification. These approaches include torrefaction, water leaching, and blending with different additives. This study focuses on the influence of additives and biomass co-blending with low-cost biofuels on the behavior of inorganic constituents and under gasification-like conditions at 950 °C and the corresponding impact in fluidized-bed gasification. For example, blending (upgraded) barley straw with 2 wt % CaCO3 resulted in a decrease in slag and a corresponding increase in the proportion of solid oxides. This indicates that thermal stability can be expected at operating temperatures up to 950 °C. Similarly, adding Ca/Si-rich biowaste components increases the ash softening point of herbaceous biofuels. Furthermore, the results show that adding Ca-based or woody biofuel components has a chemical effect on the fate of volatile inorganics. For example, increasing the concentration of calcium in the fuel significantly reduces the release of HCl and partially reduces the release of sulfur species, thus reducing the corrosion risk. These results contribute to the development of more efficient and cleaner biomass gasification processes for producing carbon-neutral fuels.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
536 _ _ |a CLARA - Chemical Looping gAsification foR sustainAble production of biofuels (817841)
|0 G:(EU-Grant)817841
|c 817841
|f H2020-LC-SC3-2018-RES-SingleStage
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 1
|u fzj
773 _ _ |a 10.1021/acs.energyfuels.4c05818
|g Vol. 39, no. 8, p. 3868 - 3881
|0 PERI:(DE-600)1483539-3
|n 8
|p 3868 - 3881
|t Energy & fuels
|v 39
|y 2025
|x 0887-0624
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1040455/files/Manuscript.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1040455/files/lebendig-m%C3%BCller-2025-influence-of-biofuel-blending-on-inorganic-constituent-behavior-and-impact-in-fluidized-bed.pdf
909 C O |o oai:juser.fz-juelich.de:1040455
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177607
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG FUEL : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERG FUEL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-1-20101013
|k IMD-1
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-1-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21