001040542 001__ 1040542
001040542 005__ 20250428202211.0
001040542 037__ $$aFZJ-2025-01916
001040542 041__ $$aEnglish
001040542 1001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F.$$b0$$eCorresponding author
001040542 1112_ $$aComputational and Data Science Seminar$$cJülich$$d2024-09-10 - 2024-09-10$$gCaDS$$wGermany
001040542 245__ $$aData Compression for Live Transmission Electron Microscopy$$f2024-09-10 - 
001040542 260__ $$c2024
001040542 3367_ $$033$$2EndNote$$aConference Paper
001040542 3367_ $$2DataCite$$aOther
001040542 3367_ $$2BibTeX$$aINPROCEEDINGS
001040542 3367_ $$2ORCID$$aLECTURE_SPEECH
001040542 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1745844343_9744$$xOther
001040542 3367_ $$2DINI$$aOther
001040542 520__ $$aScanning Transmission Electron Microscopy (STEM) has become a powerful imaging technique with resolutions enabling to spot single atoms. STEM devices produce vast data volumes while scanning the probe, so there a need for both, fast processing pipelines and data compression. We present an innovative technique to compress and post-process STEM images on-the-fly providing visual feedback to the scientist operating the microscope. An essential ingredient to this are harmonic function sets allowing to avoid several Fourier transforms in the post-processing pipeline completely. Furthermore, transformation of images into the representation in harmonic functions can be as efficient as matrix-matrix-multiplications on the GPU.
001040542 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001040542 7001_ $$0P:(DE-Juel1)184644$$aBangun, Arya$$b1$$ufzj
001040542 7001_ $$0P:(DE-Juel1)174151$$aClausen, Alexander$$b2$$ufzj
001040542 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b3$$ufzj
001040542 8564_ $$uhttps://juser.fz-juelich.de/record/1040542/files/20240910_CaDS_SDLen_slides.pdf$$yRestricted
001040542 909CO $$ooai:juser.fz-juelich.de:1040542$$pVDB
001040542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b0$$kFZJ
001040542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184644$$aForschungszentrum Jülich$$b1$$kFZJ
001040542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174151$$aForschungszentrum Jülich$$b2$$kFZJ
001040542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b3$$kFZJ
001040542 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001040542 920__ $$lyes
001040542 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001040542 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x1
001040542 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
001040542 9201_ $$0I:(DE-Juel1)ER-C-20211020$$kER-C$$lER-C 2.0$$x3
001040542 980__ $$atalk
001040542 980__ $$aVDB
001040542 980__ $$aI:(DE-Juel1)JSC-20090406
001040542 980__ $$aI:(DE-Juel1)IAS-8-20210421
001040542 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001040542 980__ $$aI:(DE-Juel1)ER-C-20211020
001040542 980__ $$aUNRESTRICTED