001040554 001__ 1040554
001040554 005__ 20250312202214.0
001040554 037__ $$aFZJ-2025-01921
001040554 1001_ $$0P:(DE-Juel1)201437$$aMaharaj, Dalini$$b0$$ufzj
001040554 1112_ $$a11th International Meeting of the Union for Compact Accelerator-driven Neutron Sources$$cPinnacle Hotel at the Pier, North Vancouver$$d2025-02-24 - 2025-02-28$$gUCANS 11$$wCanada
001040554 245__ $$aTowards the Development of a Compact Very Cold Neutron Source for the High Brilliance Neutron Source (HBS)
001040554 260__ $$c2025
001040554 3367_ $$033$$2EndNote$$aConference Paper
001040554 3367_ $$2DataCite$$aOther
001040554 3367_ $$2BibTeX$$aINPROCEEDINGS
001040554 3367_ $$2DRIVER$$aconferenceObject
001040554 3367_ $$2ORCID$$aLECTURE_SPEECH
001040554 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1741782743_27492$$xInvited
001040554 520__ $$aVery cold neutron (VCN) sources present an exciting opportunity for scientists to access unprecedented length and time scales, and achieve improved resolution in neutron experiments [1]. VCNs are defined over a wide spectral range, from 1 meV (9 Å) down to a few hundred neV (> several100 Å). Recent advancements in the development of thermal scattering kernels for candidate verycold neutron (VCN) moderator and reflector materials under the HighNESS project [2] have openedopportunities for exploring conceptual designs of VCN sources tailored to emerging high-intensitycompact accelerator-driven neutron sources (HiCANS) like the High Brilliance Neutron Source (HBS)[3]. In contrast to the expansive moderator designs typical of large reactor and spallation sources,HiCANS, with a smaller source, necessitate highly efficient and compact moderator solutions. Forthe ESS, moderator concepts have been developed based on solid deuterium; however, at the HBS, ahydrogen-rich moderator is required to effectively slow neutrons to the VCN energy range withinthe limited volume that aligns with the HBS footprint. Methane, a well-established and highly efficientneutron moderator is a promising candidate to serve as a VCN moderator since it possessesa desirable low-lying rotor mode at ~ 1 meV. Liquid parahydrogen (l-pH₂) is a known efficient coldneutron moderator since it is able to convert thermal neutrons to cold neutrons via a single interaction.Various geometrical configurations combining methane and l-pH₂ have been considered toharness the complementary properties of both materials in potential designs of a VCN moderatorfor the HBS. Monte Carlo simulations using the PHITS particle transport code were conducted toevaluate the performance of these configurations when fed by the HBS tantalum source. This studypresents a comparative analysis of the results obtained for various moderator geometries consideredwhen compared with a pure, low dimensional l-pH₂ cold source.References[1] J.M Carpenter and B.J. Micklich, ANL (05/42) (2005).[2] V. Santoro et al, (2023). Nuclear Science and Engineering, 198 31–63 (2023)[3] Baggemann J. et al. (2023). Technical Design Report HBS Volume 2 –Target Stations and Moderators.Grafische Medien, Forschungszentrum Jülich GmbH. ISBN 978-3-95806-710-3.
001040554 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001040554 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001040554 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b1$$ufzj
001040554 7001_ $$0P:(DE-Juel1)7897$$aLi, Jingjing$$b2$$ufzj
001040554 7001_ $$0P:(DE-Juel1)131055$$aZakalek, Paul$$b3$$ufzj
001040554 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, Thomas$$b4$$ufzj
001040554 909CO $$ooai:juser.fz-juelich.de:1040554$$pVDB
001040554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201437$$aForschungszentrum Jülich$$b0$$kFZJ
001040554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b1$$kFZJ
001040554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7897$$aForschungszentrum Jülich$$b2$$kFZJ
001040554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131055$$aForschungszentrum Jülich$$b3$$kFZJ
001040554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b4$$kFZJ
001040554 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001040554 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001040554 9141_ $$y2025
001040554 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001040554 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x1
001040554 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001040554 980__ $$aconf
001040554 980__ $$aVDB
001040554 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001040554 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
001040554 980__ $$aI:(DE-82)080009_20140620
001040554 980__ $$aUNRESTRICTED