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ABSTRACT: Residence time (RT) refers to the duration that a drug remains bound to its target, affecting its efficacy and
pharmacokinetic properties. RTs are key factors in drug design, yet the structure-based design of ligands with desired RTs is still in
its infancy. Here, we propose that a combination of cutting-edge molecular dynamics-based methods with classical computer-aided
ligand design can help identify ligands that bind not only with high affinity to their target receptors but also with the required
residence time to fully exert their beneficial action without causing undesired side effects.
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The kinetics of drug unbinding from proteins is a critical
factor influencing drug efficacy.1−3 Drug−protein target

residence time (RT), defined as the reciprocal of a drug’s
dissociation rate constant koff (RT = 1/koff), is gaining
recognition as a crucial parameter for determining clinical
efficacy.4 Drugs with relatively long residence times (e.g., of
minutes to hours at 37 °C) often show prolonged
pharmacodynamic effects5 and, in some cases, reduced toxicity,
which is beneficial for designing more effective therapeutics.6 A
long residence time is desired for many drugs, e.g., those
targeting chronic diseases such as cancer.7 Recently, there has
even been an upsurge in the development of infinite residence
time covalent drugs for cancer, infection, and other
indications.8 Long residence times mean that drugs are still
active even when they are no longer in circulation.7 On the
other hand, a drug with a short residence time may in some
cases offer advantages such as a reduced risk of prolonged side
effects, easier dosage adjustment, and faster reversibility of its
effects.9

Unfortunately, to elucidate how small changes in drugs’
chemical structures can have profound effects on their RTs has
in most cases remained speculative or elusive. It would clearly
be of great importance to design drugs that are optimized not
only for initial binding affinity but also for prolonged action at
the protein target site. This could be achieved by focusing on
high free energy intermediates along ligand unbinding
pathways, which in turn can be predicted by a vast arsenal of
powerful computational tools, and then tested experimentally.
Indeed, to rationally design drugs with improved residence
times, one must know the structural determinants of the
transition state associated with the protein−ligand complex
during the unbinding process. This represents the highest free
energy configuration along the unbinding pathway, where the
ligand is in a transient, less-stable position as it detaches from
its target. Ligands that stabilize the intermediate states
occurring during dissociation of the ligand from its target are
expected to display prolonged RTs. While experimental
techniques usually do not reveal the structural details of the

transition states, a variety of computer simulation approaches
effectively predict the kinetics of drug unbinding at the
molecular level and provide a quantitative estimate of the
residence time:10−12 (i) Very long molecular dynamics (MD)
simulations on dedicated machines such as Anton (https://
www.deshawresearch.com/) have described this process at the
molecular level, and (ii) techniques like infrequent metady-
namics, Gaussian Accelerated MD, scaled MD, and dissipation-
corrected targeted MD apply biasing potentials to reduce the
free energy barriers that slow down dissociation events. These
biases artificially accelerate the unbinding process, allowing
faster sampling of dissociation events. Correction terms are
then used to convert the biased dissociation rates into unbiased
residence time estimates. Figure 1 shows an application using
one of these methods (infrequent metadynamics) on a
neuronal receptor of high medical relevance, the muscarinic
receptor M2.

13 (iii) Methods like weighted ensemble and
milestoning focus on generating an ensemble of unbiased
trajectories by restarting simulations from specific config-
urations that are more likely to lead to unbinding. This
approach increases the probability of observing the dissociation
events without directly applying biasing forces, offering a
rigorous way to compute unbinding kinetics. (iv) Markov State
Models (MSMs), by analyzing molecular simulation data,
provide insights into the metastable states of a system and the
transition rates between them. MSMs help describe the
complex conformational landscape of protein−ligand systems,
offering a detailed understanding of both the binding and
unbinding processes. Within the limitations associated with the
force field used,13 one can choose any of these methods to
bridge the gap between experimental kinetic data and the
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detailed molecular mechanisms that underlie drug−target
interactions. By stabilizing the transition states of known
ligands by chemical modification, one may identify new ligands
with longer residence times. Small changes in the interactions
that stabilize this transition state can have a significant impact
on the rate of dissociation.
A drug design protocol for ligands with improved residence

times could thus involve the following steps: (i) Determining
which amino acid residues and noncovalent interactions are
most critical for stabilizing the ligand during the transition
state (TS 2 in Figure 1). (ii) Based on the knowledge of the
transition state structure, designing new ligands or modifying
existing ones to enhance their interactions with the protein
during the intermediate state. This might involve adding or
modifying functional groups on the ligand to better interact
with specific residues or to form new bonds that stabilize the

transition state. The predictions could be tested experimentally
by chemical synthesis of the ligands, followed by kinetic assays.
Techniques like X-ray crystallography14 and cryo-electron
microscopy15 might be further used to capture structural
snapshots of the transition state analogs.
In conclusion, transition state design is a powerful concept

that can lead to the development of drugs with longer-lasting
effects, greater target selectivity, and reduced off-target
interactions, and thus less side effects and decreased toxicity.
Collaborative efforts are required by computational and
medicinal chemists involving associated disciplines such as
structural biology and pharmacology. If these efforts are made,
we can soon expect concrete results in this field by academic
and industrial laboratories all over the world.

Figure 1. The residence time of a ligand (here the molecule iperoxo) unbinding from its target receptor (the transmembrane G protein-coupled
muscarinic receptor M2), as investigated by metadynamics simulations.13 Top: Simulation setup. Bottom: The simulation explores the bound state
and three different intermediate states (State A-C), along with the transition states among them. TS 2 is the state at the highest free energy. Taken
from ref 13.
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