001040560 001__ 1040560
001040560 005__ 20250414120446.0
001040560 0247_ $$2doi$$a10.1021/acsnano.4c15893
001040560 0247_ $$2ISSN$$a1936-0851
001040560 0247_ $$2ISSN$$a1936-086X
001040560 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01927
001040560 0247_ $$2pmid$$a39806296
001040560 0247_ $$2WOS$$aWOS:001396496000001
001040560 037__ $$aFZJ-2025-01927
001040560 082__ $$a540
001040560 1001_ $$0P:(DE-Juel1)180161$$aBehner, Gerrit$$b0$$eCorresponding author
001040560 245__ $$aSuperconductive Coupling Effects in Selectively Grown Topological Insulator-Based Three-Terminal Junctions
001040560 260__ $$aWashington, DC$$bSoc.$$c2025
001040560 3367_ $$2DRIVER$$aarticle
001040560 3367_ $$2DataCite$$aOutput Types/Journal article
001040560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1742208725_12050
001040560 3367_ $$2BibTeX$$aARTICLE
001040560 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040560 3367_ $$00$$2EndNote$$aJournal Article
001040560 520__ $$aThe combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications. We present low-temperature measurements of topological insulator-based three-terminal Josephson junctions fabricated by a combination of selective-area growth of Bi0.8Sb1.2Te3 and shadow mask evaporation of Nb. This approach allows for the in situ fabrication of Josephson junctions with an exceptional interface quality, important for the study of the proximity-effect. We map out the transport properties of the device as a function of bias currents and prove the coupling of the junctions by the observation of a multiterminal geometry-induced diode effect. We find good agreement of our findings with a resistively and capacitively shunted junction network model.
001040560 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001040560 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040560 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b1
001040560 7001_ $$0P:(DE-HGF)0$$aRupp, Alina$$b2
001040560 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b3$$ufzj
001040560 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4$$ufzj
001040560 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b5$$eCorresponding author
001040560 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.4c15893$$gVol. 19, no. 3, p. 3878 - 3885$$n3$$p3878 - 3885$$tACS nano$$v19$$x1936-0851$$y2025
001040560 8564_ $$uhttps://juser.fz-juelich.de/record/1040560/files/behner-et-al-2025-superconductive-coupling-effects-in-selectively-grown-topological-insulator-based-three-terminal.pdf$$yOpenAccess
001040560 8767_ $$d2025-03-12$$eHybrid-OA$$jPublish and Read
001040560 909CO $$ooai:juser.fz-juelich.de:1040560$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001040560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180161$$aForschungszentrum Jülich$$b0$$kFZJ
001040560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b1$$kFZJ
001040560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001040560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b3$$kFZJ
001040560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b4$$kFZJ
001040560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b5$$kFZJ
001040560 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001040560 9141_ $$y2025
001040560 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001040560 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001040560 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001040560 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001040560 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040560 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2025-01-07
001040560 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001040560 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001040560 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001040560 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040560 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2025-01-07
001040560 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001040560 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001040560 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001040560 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001040560 980__ $$ajournal
001040560 980__ $$aVDB
001040560 980__ $$aUNRESTRICTED
001040560 980__ $$aI:(DE-Juel1)PGI-9-20110106
001040560 980__ $$aI:(DE-82)080009_20140620
001040560 980__ $$aAPC
001040560 9801_ $$aAPC
001040560 9801_ $$aFullTexts