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ARTICLE INFO ABSTRACT
Keywords: Proton exchange membrane electrolytic cells (PEMEC) are complex multivariate electrochemical systems that
Machine learning have emerged as a prominent technology for generating green hydrogen. To reduce costs and accelerate the

Sensitivity analysis
PEM water electrolyzer
Numerical simulation

commercial deployment of PEMEC, it is crucial to develop accurate predictive models that enable to capture
the inherent nonlinearities of PEM electrolyzers efficiently. Therefore, in this study, we develop data-based
surrogate models for PEMEC with catalyst layers having high (supported) and low (unsupported) electronic
conductivity using support vector regression, extreme gradient boosting and artificial neural networks machine
learning techniques focusing on the system’s transport properties. These models are developed by using the
datasets obtained from an analytical model and a physics-based one-dimensional numerical model of PEMEC.
The dataset obtained from the one-dimensional model was split into datasets for supported and unsupported
catalyst layers, based on the electronic conductivity of the anode catalyst. The performance prediction of
these three models is evaluated and compared with physics-based modeling results. We find that both artificial
neural network (ANN) and extreme gradient boosting (XGB) models perform well in predicting the cell current
density. Therefore, the artificial neural network (ANN) model is selected to perform parametric analysis to
investigate the effect of operating conditions and transport properties of the anode side. Both shapely additive
explanations (SHAP) and sensitivity analysis reveal that the operating temperature is the most important
parameter affecting the performance of the proton exchange membrane electrolytic cell. For supported catalyst
layers, the influence of membrane thickness is greater than the catalyst’s electronic conductivity. However, in
the case of unsupported catalysts layers, the SHAP values for electronic conductivity are found to be larger
than membrane thickness.

1. Introduction In order to utilize PEMECs effectively in real-time situations, it is
pertinent to be able to predict the system behavior under various oper-
ating conditions. PEMECs operate through a complex interplay between
electrochemical reactions, mass transport, heat transfer, and fluid flow
across different spatial and time scales [5]. Physics-based modeling of
PEMECs helps in revealing insights into the workings of these complex

In pursuit of a transition towards a sustainable energy economy,
the production and efficient utilization of green hydrogen is central to
shaping the energy landscape [1]. To this end, PEMECs have emerged
as a promising technology owing to their high efficiency, modular de-
sign, lean balance-of-plant layout due to lower gas crossover, and high

purity of produced hydrogen [2]. PEMECs utilize a proton-conducting charge and transport phenomena. This is accomplished by solving a set
membrane as the electrolyte which helps in rapid proton transport of governing differential equations that describe the physical processes
between anode and cathode, thereby achieving high current densi- occurring within the electrolyzer. However, these calculations can be
ties. These features can make PEMECs a crucial component in the computationally intensive for detailed modeling of large-scale systems
electrical grid as they offer fast response times. When compared with in real-time conditions. To address this potential drawback, data-based

alkaline electrolyzers, PEMECs offer higher gas purity [3] and current

- modeling has emerged as an effective cost-reducing alternative. These
densities [4].
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Nomenclature

AL Active Learning

ANN Artificial Neural Network

BPNN Back Propagation Neural Networks

CFD Computational Fluid Dynamics

CGCNN Crystal Graph Convolutional Neural Net-
work

CL Catalyst Layer

DFT Density Functional Theory

ERT Extremely Randomized Trees

GDL Gas Diffusion Layer

HER Hydrogen Evolution Reaction

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MEA Membrane Electrode Assembly

ML Machine Learning

MSE Mean Square Error

OER Oxygen Evolution Reaction

PEM Proton Exchange Menbrane

PEMEC Proton Exchange Membrane Electrolytic
Cell

PEMFC Proton Exchange Membrane Fuel Cell

R? Coefficient of determination

RBF Radial Basis Function

ReLU Rectified Linear Unit

RMSE Root Mean Square Error

SA Sensitivity Analysis

SHAP Shapely Additive Explanations

SI Sensitivity Index

SR Split Ratio

SVM Support Vector Machine

SVR Support Vector Regression

XGB Extreme Gradient Boosting

models rely on large datasets obtained from experiments or simulations
and learn the relationship between input parameters, such as operating
conditions, material properties and design parameters, and output tar-
gets. Using statistical techniques they establish a relationship between
input parameters and output targets which enables these models to
make predictions, perform system optimization, and identify unknown
patterns. In particular, these models have proven to be useful for online
motoring [6], real-time fault detection, and prognostics. Owing to their
empirical nature, these models can be directly integrated with control
systems to regulate the operating conditions dynamically based on the
real-time output of the electrolyzer and ensure optimal performance.
A major drawback of the current state of PEMECs is the usage of
noble metals as catalysts for the hydrogen evolution reaction (HER)
and oxygen evolution reaction (OER). Extremely randomized trees
(ERT) were used to screen 26 key features such as atomic radius,
electronegativity, lattice constant, etc., to develop a surrogate model
based on back propagation neural networks (BPNN) from a database
generated from DFT calculations. By combining machine learning po-
tential (MLP) and crystal graph convolution neural network (CGCNN),
a universal ML framework was developed to screen 43 alloys out of
2974 potential candidates showing ideal HER activity [7]. Unlike the
HER, the OER for PEMECs is a 4-electron transfer reaction which makes
it the rate-determining step for the electrolyzer. Expensive Iridium-
based oxides are typically used as the anode catalyst. ML techniques
have been used to screen these systems to obtain configuration which
leads to optimized activity. A global geometry surface optimization was
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performed using the Gaussian approximation potential (GAP) methods
to obtain the best surface configurations for rutile IrO, [8]. Similarly,
active learning (AL) has been deployed in conjunction with DFT calcu-
lations to synthesize 75 candidates of IrO; polymorphs from 956 unique
structures [9].

While electrocatalysts are critical for the functioning of PEMECs,
their performance is sensitive to varying physical and chemical pro-
cesses occurring at widely different length scales. The reaction zone
in the electrode is nano/micro scale [10,11], gas diffusion through
PTL at micro/millimeter scales, and the entire system, at both the
single cell and stack level, has dimensions in meter scales. Parameters
ranging from catalyst properties, membrane-electrode assembly (MEA)
dimensions, and operating conditions have been shown to influence the
performance of PEMECs [5,12]. Hence, it is effective to use ML tech-
niques which consider parameters across different scales to predict and
optimize electrolyzer performance. Weka ML [13] is used to generate a
training database by modifying X-ray computed tomography images of
the anode GDL. This ML technique computed the oxygen content of the
entire diffusion layers directly through image data. Decision trees and
random forest algorithms have been deployed to optimize the MEA. The
models trained over a database generated from previously published
articles have prescribed optimal catalyst loading, ionomer/carbon ra-
tios, support materials for anode and cathode, and appropriate pore
structure of GDL [14,15]. Similarly, polynomial regression [16] has
been employed to furnish optimal cell design parameters based on
hydrogen production rate, catalyst area, and type of cell design. At
the stack level, neural networks have shown potential in being able
to predict the stack efficiency and hydrogen flow rate for 10 cells
connected in series [17]. More recently, Chen et al. [18] proposed
a novel frame work using knowledge-integrated machine learning to
advance the development of PEMEC.

From the above discussions, it is evident that ML has been predom-
inantly applied at an atomistic scale to screen electrocatalysts for PE-
MECs. This is accomplished principally from DFT-generated databases.
However, the need to optimize individual components such as MEAs,
GDLs, and flow channels is also crucial for the efficient operation
of a complex multivariate system like PEMEC. This can be achieved
efficiently through the black-box nature of data-driven models. This
black-box attribute of ML techniques facilitates in coupling multiple
parameters, which govern different individual components (on multiple
scales), to predict performance characteristics. Owing to the lack of
such studies in the literature [19] for PEMECs, there is a need to
employ physics-based models or experiments to generate databases and
expedite the use of ML for optimizing individual components or the
entire cell. Therefore, this paper aims to employ machine learning to
model the performance of PEMEC on a cell level using data generated
from macroscale physics-based models [12,20]. Thereby, shifting the
focus from the existing body of work on ML-based screening of electro-
catalysts for PEMEC. This is unlike PEMFCs [21], where ML has been
utilized to a great extent on both individual components, as well as the
entire PEMFC system/stack for system optimization and cost reduction.
The PEMEC is governed by a large set of parameters including operating
conditions, material, transport, and electrochemical properties. Given
the critical importance of the anode side wherein the OER takes place,
we focus our attention in this initial work on the operating condi-
tions and transport properties of the anode side. In this context, we
separately investigate the role of supported and unsupported anode
catalyst layers on cell performance. Supported catalyst layers use a
support material on which the catalyst particles are dispersed. In these
systems, catalytic activity and electronic transports is predominantly
undertaken by the catalyst particles and support material, respectively.
This approach results in minimal usage of expensive noble materials
and enhanced conductivity [22]. However, most of the support ma-
terials are unstable under anodic conditions for long term operations.
Unsupported catalyst layers circumvent this problem, albeit at the cost
of expensive catalyst material. The multi-functionality of unsupported
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catalyst layers is attributed to its ability to perform both the catalytic
activity and electronic transport. For these type of catalyst layers, the
electronic conductivity is influenced by the amount of ionomer content.
Increase in ionomer content may lead to the reduction in the number of
contact points between the solid particles, thereby, increasing the elec-
tronic resistance. We attempt to capture the interaction on how these
two types of catalyst layers respond to varying operating conditions
and anode transport properties. As electronic conductivity is one of the
parameters which depend on the type of the catalyst layers, we divide
the anode catalyst layer as supported and unsupported [23] based on
the values of the anode electronic conductivity. To the best of our
knowledge, there is no previous study applying different ML techniques
and comparing them in the context of an entire PEMEC model from
data-generated from physics-based models.

The paper is organized as follows: We begin with a brief description
of the three different ML techniques used for our work in Section 2.
Data acquisition and information on data pre-processing are also pro-
vided in this section. Results are presented and discussed in Section 3
followed by conclusions in Section 4.

2. Method

Three different types machine learning algorithms, each with a
unique mathematical foundation, are selected in this study to inves-
tigate their comparative value in making performance prediction for
PEMEC. The support vector regression (SVR) is a classical statisti-
cal technique which utilizes convex optimization by transforming the
input data into a higher dimensional feature space using kernal func-
tions [24]. On the other hand, the constituting statistical component
of extreme gradient boosting (XGB) is the decision tree, which is
aggregated sequentially, to built an accurate ensemble model. The
accuracy of this model is enforced by minimizing the errors using
gradient boosting. Artificial neural networks (ANN) rely on a set of
layers which are interconnected by biologically inspired non-linear
activation functions called neurons. We aim to investigate on how
these three fundamentally different algorithms perform in predicting
the performance of a highly non-linear PEMEC system. In this section,
we briefly introduce the prominent features of the three ML methods
used in this study. We then proceed with describing data acquisition
and preprocessing.

2.1. Support vector regression (SVR)

Support vector regression [25] is a machine learning technique
utilized in predicting continuous data. This method borrows concepts
from the Support Vector Machines (SVM) method, wherein a hyper-
plane in high dimensional feature space is used to classify two distinct
classes. Similar to SVM, SVR utilizes kernel functions to enlarge the
input feature space which enables the creation of a hyperplane in the
resulting multidimensional space. Thereby, the non-linearities arising
from the relationship between initial input parameters and output
target are linearized in higher dimensions. Common kernel functions
include linear, polynomial, Gaussian radial basis function (RBF), and
sigmoid. The hyperplane is enclosed within a decision boundary, whose
extent is controlled by the hyperparameter e. The objective is to tune
the SVR model such that it encloses the maximum number of training
data points within the decision boundary around the predicted value.
The data points lying out of the decision boundary contribute to the
model’s error. Apart from e and the choice of the kernel function,
SVR has another hyperparameter C which controls the bias-variance
trade-off of the model.

Applied Energy 386 (2025) 125529

2.2. XGBoost (XGB)

XGBoost (eXtreme Gradient Boosting) is a machine learning tech-
nique which uses an ensemble of decision trees built in a sequential
manner for solving both regression and classification problems. The
working principle of a single decision tree involves recursively split-
ting the training dataset into subsets. This splitting is done based on
selecting a particular input feature and its value such that it creates a
homogeneous subset. This splitting process continues until the tree has
reached a maximum depth or has a minimum number of samples in the
resulting node. XGB operates by iteratively building a weak decision
tree to predict the negative gradient of the loss function (squared
error), which is the basis of the gradient boosting algorithm. Each of
these decision trees is sequentially fit to minimize the residuals of the
preceding trees. Mathematically, it optimizes the following objective
function for a given dataset (x;, y,-);’=l:

n K
ow=;umw+;9m> )}

where the loss function L(y;, §;) is a squared loss function expressed by
Ly $) = i = 9’ @

and Q(f)) is the regularization term for the kth tree. The final predic-
tion by the model is made by an additive combination of the output of
all the trees

K
DI ED) 3)
k=1

2.3. Artificial neural networks (ANN)

Inspired by the architecture and functionality of biological neurons,
artificial neural networks are computational models which are capable
of accurately predicting regression problems. The basic working unit of
ANN is the neural node or neuron. Neurons are mathematical operators,
which receive inputs and transmit output signals known as activations.
Fig. 1 shows a representative architecture for ANNs. A group of neurons
are stacked together to form a layer. The first layer represents the
input layer wherein, each node transmits individual input parameters.
Similarly, the last layer is the output layer constituting the nodes which
predict the target variables evaluated by the model. Interim layers
are known as hidden layers which process and extract features from
data. The information flow occurs from the input to the output layer
through the hidden layers as shown from the interconnections in Fig. 1.
Mathematically, the output signal of a single neuron can be expressed
as follows:

2=l X7+ b)) )
r=1

d = ¢z} (5)

Here, the indices / and i represent layer number and corresponding
neuron index, respectively. The output signal (zﬁ) is the input obtained
by a linear combination of weights (w/,: wﬁ . wiz, wl’_3, ..., w!, ) and cor-
responding m activation values from the previous layer (ajﬁ‘l ). The term
bﬁ is the bias which controls the activity of the corresponding node.
Activation values are computed by applying the activation function ¢
on zﬁ. The most commonly used activation functions are the sigmoid,
rectified linear unit (ReLU), tan hyperbolic and softmax functions.
These non-linear activation functions allow the neural networks to
learn the non-linearities present in a given database. For the first hidden
layer, Zzl' corresponds to the values of the input layer. This transmission
of activation values from the input layer to the output layer is known
as forward propagation. The prediction obtained from the output layer
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Fig. 1. Schematic representation of architecture for an artificial neural network. The architecture of a typically consists of an input layer, two or more hidden layers, and an

output layer.

(9) are compared with the desired output (y) for the input data point.
For a dataset with n sample points, the cost function is given as:

T =5 Y A5y ®)
=1

where .Z is the loss function which computes the error for a given
data point. The parameters wl’.r and bﬁ are updated by optimizing the
cost function through the gradient decent. The weights and biases of
each neuron are adjusted such that the associated error is minimized
in each iteration. This correction of weights and biases has a general

form expressed as:

w!=w'!—-adw! )
B' = B' —adB' (C))

where W' is the weight matrix comprising weights for all the nodes
inside the layer 1, and B is the corresponding bias vector. The term
a is a positive constant known as the learning rate. This correction
process flows in the opposite direction, starting from the output layer,
and is known as backpropagation [26]. The weights, biases, number of
hidden layers, neurons per layer, and the learning rate constitute the
hyperparameters of ANNs.

2.4. Data acquisition and preprocessing

At the core of any machine-learning model is the quality of data
on which the model is developed. As such, it is crucial to gather
reliable and clean data to circumvent inaccurate predictions and gen-
eralize well on unseen data. Usually, data for developing data-based
models is gathered directly from actual PEMEC experiments [17,27]
or through simulating physics-based models by varying a range of
parameters [28,29]. In this study, we develop data-based models from
data gathered from two different physics-based models. These models
have been validated against existing experimental literature. Dataset 1
is generated by simulating a zero-dimensional analytical model [20]
for PEMEC. We have varied the applied cathodic pressure, anodic
pressure, exchange current density, the separator thickness, and applied
current density to calculate the output cell voltage. The range of these
input parameters is shown in Table 1. The second dataset is generated
from a one-dimensional two-phase, non-isothermal CFD model of PE-
MEC [12]. This model accounts for the description of mass, charge,
species, and heat transport. Current density data obtained from this
model encompasses the complex non-linear coupling between the set of

nine conservation equations [12]. The 1D model, which was developed
by Salaberri [12], has been validated against the experimental results of
Chandesris et al. [30] and Debe et al. [31] for different physicochemical
and geometric parameters of the membrane electrode assembly. The
polarization curves obtained from the model showed good agreement
with the experimental data. Therefore, the synthetic data generated
from the physics based model serves as an experimentally validated
database to develop accurate data-driven surrogate models. The input
parameters and their range of variation are presented in Table 2. The
input features comprise parameters influencing the operating condi-
tions (T and P“) and design parameters influencing effective transport
properties (o7, 69, 5;’” and §,,,). The operating parameters (T and
P9) also effect several transport properties such as the molecular diffu-
sivity of water vapor, effective protonic conductivity, effecttive water
diffusivity, liquid saturation and electrochemical reaction rates. A cen-
tral parameter in which the investigated experimental data sets for
supported [30] and unsupported catalysts differ is the electrical con-
ductivity. Reported values for the effective electronic conductivity of
anodic catalyst layers in PEMECs show a variation across several orders
of magnitude between supported and unsupported catalyst layers. For
example, Mandal et al. [23] found that the through-plane electronic
conductivity of the unsupported IrO, catalyst layer is in the range of
1073-10~> S/cm for different ionomer fractions and relative humidity
values [23]. Therefore, based on the above mentioned literature, in
this study we have selected the electronic conductivity as the transport
property to split the second dataset into two parts to account for
supported and unsupported cases. However, it should be noted that
other important factors such as the active catalyst surface area, cata-
lyst loading and ionomer content also influence the overall electronic
conductivity of the catalyst layers. The values of the considered §,,,,
correspond to the thickness of Nafion 212, Nafion 115, and Nafion 117.
There are two output variables in these datasets: current density and
efficiency. The efficiency (#,) is defined as the ratio between the energy
required to break one mole of water under equilibrium conditions to the
energy required to decompose the same in non-equilibrium conditions.
It is given by the following expression [32] :

_ 2FE,, ©

ZF(Etn + Vcel[ — Erv)

where E™ is the reversible cell voltage, V., is the applied cell voltage
and E,, is the temperature-dependent thermoneutral voltage expressed
as:

E,, = 1.485—1.49 x 1074(T — 273.15) — 9.84 x 1078(T" — 273.15) (10)

e
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Table 1

Range of input variables for the 0D model.

Inputs (Feature vectors) Unit Range of values

Applied cathodic pressure, P¢ bar 1.0, 4.0, 6.0

Applied anodic pressure, P* bar 1.0, 4.0, 6.0

Exchange current density, i, A cm2 1.0 x 1079, 2.602 x 107, 1.0 x 10712
Separator thickness, d,,, cm 0.0057, 0.0127, 0.021

Table 2
Range of input variables for the 1D numerical model.

Inputs (Feature vectors) Unit Range of values

Operating temperature, T °C 40, 50, 60, 70, 80
Operating anodic pressure, P“ bar 1.0, 2.0, 3.0

Anode catalyst layer thickness, &7, pm 8, 12, 16, 20

Anode porous transport layer thickness, §,, pm 200,400, 600, 800
Membrane thickness, §,,,, pm 50, 127, 180

Anode catalyst electronic conductivity (unsupported), o, Sm! 0.0035, 0.0085, 0.035, 0.085
Anode catalyst electronic conductivity (supported), ¢¢, S m 3.5, 35.0, 350

cl

Since the data is directly generated from physics-based models, the
input variables shown in Tables 1 and 2 are directly used as the input
features for developing the data-based models.

Both, input features and output variables have widely different
scales. Features with larger scales would lead to biasing of the machine
learning model towards these input variables. This necessitates the
need to scale these parameters before training the model. We have
normalized the input features and output variables between 0 and 1.
Normalization is employed for the SVR and ANN models, whereas we
have omitted this step for XGB models [33]. Tree-based models are
generally less sensitive to feature scaling as they are split based on the
threshold feature values.

3. Results and discussion

We begin our discussions by first investigating the performance of
developed data-driven models for dataset 1 in Section 3.1. Here we
define three statistical evaluation metrics which are generally used to
quantify the performance of machine learning models. After discussing
data-driven models generated from an analytical model [20], we next
explore the performance of machine-learning models developed from
the data generated by a non-linear one-dimensional CFD model [12] in
Section 3.2.

3.1. Dataset 1: Zero-dimensional analytical model

A dataset consisting of 1600 data points originating from the ana-
lytical model is randomly distributed into a training set and a test set.
The parameters used to generate this dataset are given in Table 1. We
have fixed the split ratio to 70:30. The training set is used to develop
the machine learning models. During this process, the hyperparameters
for each algorithm are tuned so that the resulting models provide
accurate predictions for the 1200 data points of the training set. The
mean absolute error (MAE), root mean square error (RMSE), and the
coefficient of determination (R?) are used to quantify the performance
of the data-driven models. The mathematical expressions of MAE, MSE,
and R? are given below:

n
1

MAE ==Y |y, -, 11
”j=1|yj ¥l an

n
1 A
n j§=l(yj‘ - Yj)z

Ly —9.)?
R=1-2=2 T 21,7 3) 13
1 -
" Y =5
where n denotes the number of samples, y; represents the ground truth
obtained from the analytical model, y denotes the predicted values and
¥ is the average value of y;.

RMSE = 12)

Fig. 2(a) illustrates the relationship between predicted voltage val-
ues and the ground truth for the training data set. We observe that all
three models show excellent voltage predictions, with the ANN model
showing the best RMSE values of 10~3. The R? values of the SVR, XGB,
and ANN models are measured to be 0.999 respectively. The closer
the value of R? is to one, the stronger the corresponding correlation
between the model predictions and actual values. As such, all the data-
driven models show an excellent correlation between predicted and
true voltage values.

The next step after building a model based on the training dataset
is to evaluate its prediction capability on unseen data. This step is
accomplished by using the developed models to make predictions on
the test dataset, which in this case is 400 data points. Fig. 2(b) shows
the absolute error between the predicted and actual voltage values for
the different test samples. We notice the least performing model on
the test dataset is the SVR model with a maximum absolute error of
0.037 V. It is clearly observed that several test samples have an absolute
error greater than 0.01 for the SVR model. When compared to the SVR
model, both XGB and ANN models produce better predictions on the
test data. Furthermore, the maximum absolute error for XGB and ANN
are calculated to be 0.0074 V and 0.0044 V, respectively. Therefore,
the predictive performance of the ANN model is best on the training
dataset.

To further elucidate the difference between the three methods,
Fig. 2(c) illustrates a polarization curve with a randomly selected
working condition: P¢ = 4.0 bar, P = 1.0 bar, du,p = 0.0127 cm,
and iy = 2.602 x 10710, In line with our observations in Fig. 2(b),
we notice that the SVR model shows deviations in voltage prediction
when compared to the analytical model as it is subjected to unseen
data. The departure from the ground truth is particularly large as it
over-predicts the voltage at lower current densities (0.0-0.5 A/cm?).
This difference reduces as the current density approaches to 1.0 A/cm?,
beyond which the model begins the under predict the ground truth.
Both XGB and ANN show excellent voltage predictions when compared
with the analytical model. The cell voltage values, as well as the trend
of the polarization curves are captured well by XGB and ANN models.
This showcases the superior learning ability of both these models to
learn patterns and output values from the training dataset. The mean
absolute error of XGB and ANN models computed from the test data is
found to be 0.0016 V and 0.0010 V, respectively.

3.2. Dataset 2: One-dimensional CFD model

The machine learning models developed so far learn from the
data generated from an semi empirical model. Although derived from
physics-based governing equations, OD models have reduced dimen-
sionality and represent lower complexity of the system. Training ML
models using the output of such models is relatively easier and requires
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Fig. 2. (a) Relationship between voltage predicted from data-based and 0D analytical model values for the training data set (b) Residual between voltage predicted from data-based
and 0D analytical model in the test set. (c) Comparison between the different data-based models with the analytical model for a test condition: P = 4.0 bar, P* = 1.0 bar, d,,, =

0.0127 cm, and i, = 2.602 x 1071 A cm~2.

less data because the input—output relationship is less intricate. The 1D
models are more complex, multivariate partial differential equations
which contain large non-linear interactions. To develope data-driven
models from such equations, we require detailed datasets with include
a wide range of boundary conditions and parameter variations. As
such, the performance capability of ML models to learn and predict
non-linearities associated with a data set obtained from coupled set of
multivariate non-linear partial differential equation has not yet been
tested. In this section, we move from the relatively simple 0D model
and focus on developing such data-based models and evaluating their
predictive capacity by learning from non-linear datasets. This dataset
is generated from a one-dimensional physics-based model composed of
nine coupled conservation equations [12].

3.2.1. Data-driven model performance

Since Dataset 2 is a multi-output regression problem, we have
developed separate models for predicting current density and effi-
ciency using the SVR and XGB algorithms. However, a single model
is developed for the ANN algorithm by building a network with two
output nodes. As the dataset generated from the 1D-numerical model is
segregated into supported and unsupported datasets, separate machine-
learning models are developed for each case. The data set consists
of 36703 and 48943 data points for the supported and unsupported

sep

cases, respectively. Further, each of these datasets has been split in
the ratio of 80:20 for the training and testing datasets. The optimal
hyperparameters for the SVR model for current density prediction
are as follows: C = 15.0, ¢ = 0.004, and y = 10. The radial basis
function is employed as its kernel. For predicting efficiency, the values
of SVR model hyperparameters C and ¢ were set to be 30 and 0.01,
respectively. Similarly, the optimal number of estimators was set to be
700 for the XGBoost model. The learning rate was set to be 0.015. The
hyperparameters for ANN are the same for current density and effi-
ciency predictions. A deep neural network architecture was built with
three hidden layers consisting of 60, 45, and 25 units, respectively. The
callback functionality was implemented to optimize the neural network
model. The mean squared error criterion is used as the loss function
with the optimal learning rate found to be 0.005. This assists in halting
the training process once the training loss falls below a predefined loss
value. We have set this value to be 107°. The hyperparameters of the
employed models, such as the number of neurons, number of hidden
layers, learning rate, ¢, number of estimators, etc. were obtained by
using the grid search hyperparameter tuning technique. This method
evaluates the model’s performance for every combination of a pre-
defined set of hyperparameters and identifies the best combination. All
the models were trained on a laptop with 16 GB RAM and equipped
with an intel core 12th generation i5 processor. The training time for
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shown in each plot by the RMSE and R? values.
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Fig. 4. Comparison between the predicted current densities (top row) and efficiencies (bottom row) with those obtained from the 1D numerical model for the unsupported anode
catalyst. The model’s performance on the training and test set are shown in each plot by the RMSE and R? values.

SVR, XGB and ANN models was approximately 1 min, 4 s and 23 min,
respectively.

We first begin our discussion on model performance for supported
catalysts. Fig. 3 illustrates the predicted outcomes of the current densi-
ties (top row) and efficiency (bottom row) from the SVR, XGB, and ANN
machine learning algorithms. A residual is defined as the difference
between the ground truth and model prediction. All three models

appear to fit well on the training dataset with R? scores greater than
0.99. This establishes a good correlation between input features and the
output variable. When compared with the SVR model, both XGB and
ANN have shown better performance in predicting current density over
the test data with the RMSE of 0.014 and 0.0217, respectively. Even
though the SVR model has shown good performance on the training
data, we notice a number of outliers for the test data. The value of
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the maximum residual on the test data is found to be 0.518 A/cm—2
when compared with 0.04 A/cm~2 on the training data. This shows
that the SVR method has a good bias but suffers from high variance.
The RMSE values for the training and test datasets are similar for
both XGB and ANN models. Moreover, these models show a similar
distribution of residuals for the training and test datasets around the
fit line. Therefore, both these models exhibit low bias and variance in
predicting current densities. We next assess the performance of data-
based models in predicting efficiency, which is defined by Eq. (9). The
XGB and ANN models show good performance with R? greater than
0.999 on the test data. The SVR model shows deviations from the fit
line at lower efficiency (60.0-70.0%). At higher (>90.0%) efficiencies,
we notice outliers in the test data for the SVR model.

The performance of the three data-driven models for the unsup-
ported catalyst is shown in Fig. 4. When compared with the supported
catalyst, the models show RMSE values for current density prediction
reduced by nearly 50% on training and test datasets for unsupported
catalyst layers. The maximum residual value for SVR, XGB, and ANN
models on the test data was found to be 0.49 A/cm~2, 0.086 A/cm~2,
and 0.088 A/cm~2, respectively. This can be attributed to the fact that
the range within which ¢, is varied is between 0.0035-0.085 S/m
for unsupported catalysts. The relative performance between the three
models shows similar behavior as exhibited for supported catalysts. The
SVR model continues to show high variance owing to a large number of
outliers on the test data. Both XGB and ANN models continue to show
better prediction performance with the XGB model performing slightly
better (RMSE = 0.0073) than the ANN model (RMSE = 0.0126).

While RMSE quantifies the average magnitude of errors, it is also
important to quantify how large the errors are relative to the actual

values. This error metric is quantified by the mean absolute percentage
error (MAPE), which is given by:
n o
mapE =13 1222 100 14)
mia Y

MAPE is particularly important to indicate if the data-driven model
consists of a large number of outliers. As this metric computes the
relative error in percentage, the error arising from the outliers of the
model contribute predominantly to the MAPE, leading to its overam-
plification. To further probe into the model’s performance, Table 3
illustrates the MAPE values obtained from the test dataset for both
supported and unsupported catalyst layer scenarios. The high values
of MAPE for the SVR model in predicting the current density is in-
dicative of the large number of the outliers seen from Figs. 3—4 (top
row). The SVR model relies on the kernel function to transform the
input features into a higher-dimensional space assuming that a linear
relationship is established. When dealing with highly non-linear data,
as obtained from the 1D model, the RBF is not capable of mapping the
input features to establish a linear relationship with current density.
As a result, we observe a large number of data points lying outside
the e-decision boundary, leading to an overfitted model with poor
performance on the test data. Among XGB and ANN, ANN shows better
current density prediction on the test data, with the MAPE below 50%
for both supported and unsupported cases. On the other hand, all the
models show ideal performance (MAPE values close to zero) when
predicting efficiency.
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;:zﬂfnzan absolute percentage error (MAPE) computed from the testing data set.

Supported Unsupported

Predictor SVR XGB ANN SVR XGB ANN
Current density 98.37 x 10° 1.73 x 10% 24.28 53.04 x 10? 1.027 x 10? 30.02
Efficiency 0.412 0.0027 0.0996 0.412 0.0019 0.0445

3.2.2. Model comparison

To further discern the differences between the developed models,
we plot the polarization and efficiency curves at two random conditions
and compare them with the corresponding curves generated from the
1D numerical model. It is to be noted that these data points were not a
part of the original training and test datasets. The polarization curves
for the supported catalyst case shown in Fig. 5(a) correspond to T
= 80°, P/ = 1 bar, 4, = 127 ym, ¢ = 350 S m™!, 5% = 12 ym
and 5/‘)‘” = 400 pm. While all the three models show good agreement
with the numerical model, the current densities predicted by the SVR
model match well with the numerical model at voltages (1.7-1.9 V).
For voltages below 1.7 V, we notice that the SVR model slightly over-
predicts current density values. Conversely, it shows under prediction
when the cell is operated at voltages over 1.9 V. However, all three
models show good predictions in current density for supported catalysts
as shown in Fig. 5(b). The corresponding operating conditions and
transport properties are shown in Fig. 5. In line with our observations
in Figs. 3 and 4 (bottom row), all three models show good comparison
with the efficiency prediction of the CFD model for the supported and
unsupported scenarios.

The two polarization curves exhibit high non-linearities as cell
potential increases. As such, to make accurate predictions, a data-
driven model must not only be able to capture this non-linear behavior,

but also be robust enough to handle over-fitting. The XGB method
uses an ensenble of decision trees which are trained on sequential
residuals of the data. By considering the predictions of each of these
decision trees, the XGB model handles non-linearities. This ensemble
technique using negative gradient of the squared loss function also
reduces the impact of outliers, thereby, circumventing over-fitting.
Similarly, ANNs handle complex non-linear relationships between input
features and output variables by learning patterns through layers of
interconnected nodes. Each individual node consists of a non-linear
rectified linear unit (ReLU) activation function. As the data transmits
to-and-fro through each of these layers, the network continues to learn
the intricate relationship between current density and the input vari-
ables listed in Table 2. While there are several approaches to intercept
over-fitting [34], we have used the early stopping technique to prevent
this. As such, the model gives accurate predictions well on unseen input
conditions. On the other hand, the SVR generates an optimal hyper-
plane in the high-dimensional feature space. This hyperplane may not
effectively capture the complex non-linear relationship. Additionally,
the SVR method has fewer hyperparameters when compared to the
ANN method. This reduces its flexibility to fine-tune the model and
provide better predictions.

In general, data-driven models work well within the parameter
space on which they have been trained. However, it is interesting to
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computed at a constant current density of I = 1.8 A cm~2. The supported and unsupported catalyst layers are marked by solid and dashed lines, respectively.

probe into performance capabilities of these models when used for
parameter values lying outside this training. To illustrate this effect,
Fig. 6 shows the polarization curves obtained for the values of (a)
T and (b) 6,,, extending outside the training range, as shown in
Table 2. The other parameters are fixed with the underlined values.
Fig. 6(a) illustrates the comparison between the three models when
the operating temperature is extrapolated by 10 °C from the boundary
values. We observe that the SVR model clearly fails to match the
current densities predicted by the numerical model. For both T'n =
30 °C and 90 °C, the model shows a difference in current density
of around 1 A/cm? when compared to that the current density given
by the numerical model at the operating voltage of 1.3 V. The SVR
model continues to over predict current density for the entire range
of operating voltage at T"" = 30 °C. Whereas for T" = 90 °C, the
predictions of the model change from over to under prediction around
the operating voltage of 1.7 V. Both XGB and ANN models show
good comparison with the numerical model. While we notice a slight
deviation in current density prediction by the XGB model at higher
operating voltages, the prediction of the ANN model match well with
the numerical model for the entire range of operating voltage. Apart
from T, we have also varied the membrane thickness (6,,,,,), to probe
into the developed models capability to predict outside the range of
their training data. While the trained input values for §,,,,, varied from
50 pm to 180 pm, we selected 25 pm and 250 pm as test values to check
model’s extrapolation performance. This corresponds to a deviation
in membrane thickness of 25 pm (very thin) and 70 pm (very thick)
from the lower and upper boundary values, respectively. For the test
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cases, we notice from Fig. 6(b) that the ANN once again performs best,
followed by the XGB model which shows a slight deviation at higher
operating voltages. While the SVR model shows least performance, it is
interesting to notice that while the model was capable to capturing the
trend of the polarization curve given by the numerical for §,,,,, = 25 pm,
it completely fails when §,,,,, = 250 pm. However, the ANN model with
its multiple hidden layers and non-linear activation nodes, was capable
of accurately learning the patterns and relationship between the input
parameters and output variables to make correct extrapolations.

From the preceding sections, it is evident that both XGB and ANN
models are capable of predicting IV-curves and efficiencies with high
accuracy. Since XGB uses decision trees, it is more interpretable in
comparison to ANN. Therefore, we select XGB for the discussion on
feature importance in a later section and deploy the developed and
calibrated ANN model to conduct parametric analysis in the next
section.

3.2.3. Parametric analysis (ANN model)

The influence of different operating conditions and transport prop-
erties is discussed in this section for both supported and unsupported
anode catalyst layers. The effect of these parameters is elucidated
through polarization curves and cell efficiency (5,) at a given current
density of 1.8 A/cm?.

(a) Operating conditions
Fig. 7 illustrates the effect of (a) operating temperature and (b)
anodic operating pressure on the polarization curves and cell efficiency.



K.A. Raman et al.

Applied Energy 386 (2025) 125529

(a) 21 80

2.0 751
= 1.94
% 9870_ 7
> 1.8 > _—
> 1.71 ‘S
8 1.6 II ----- Unsupported i 60

' 62 = 15 um Supported
151 62 =21 um 551
1.4+ 50 %
0 1 2 3 4 Supported Unsupported
Current density (A cm™2)
(b) 2.1 80

2.0 751
< 1.9
< 270 pm
©1.8 =
2 £ 65
=11 S
o i 5 60
O16i{n Supported  ----Unsupported

1.5 03 =455/m 0% =0.0095S/m 551

03, =450S/m  0g = 0.045 S/m
1.4+ ' ' ' - , '
0 1 2 3 4 Supported Unsupported

Current density (A cm~—2)

Fig. 8. Influence of anode catalyst transport properties such as (a) Thickness ((6¢,)) and (b) Electronic conductivity (¢¢) on polarization curves and cell efficiency. The cell efficiency
is computed at a constant current density of I = 1.8 A cm~2. The supported and unsupported catalyst layers are marked by solid and dashed lines, respectively.

The solid lines and dashed lines represent supported and unsupported
anode catalyst layers, respectively. As each of these parameters is
varied, we have kept the values of other features constant, as shown
by the underlined base parameter values in Table 2. For conducting
parametric analysis, we have considered values which are slightly
different from those used to train and test the model. However, it
should be emphasized that the performance of a data-based model
depends not only on the amount of data but also on the variety of data
it has seen. Therefore, these models are capable of making accurate
predictions when the values of the input features are within range of
the feature values they were trained upon.

Fig. 7(a) illustrates the influence of T which is set to be 45°,
65°, and 85 °C. We observe that the current density increases with
an increase in the operating temperature. This temperature-dependent
enhancement in current density becomes more profound when the
cell is operated at high voltages (crosses the kinetic regime). This
behavior is attributed to the fact that as temperature increases, the
electrochemical reaction rate and the protonic conductivity of the
membrane increases, consequently, the proton transfer rate across the
membrane increases [35]. This results in high current densities at
elevated temperatures. In general, for a given temperature, we notice
that supported catalyst layers show a higher value of current density
when compared to unsupported catalyst layers. We also observe that
the rate of increase in current density as temperature increases is larger
for supported catalysts. Similarly, a 5.4% increase in 7, is noticed when
Ti" is increased from 45 °C to 85 °C for supported catalyst layers when
compared to a 4.7% increment for the unsupported case.
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A negligible influence of the anodic operating pressure on current
density and cell efficiency is observed for both supported and unsup-
ported catalyst layers. Fig. 7(b) shows that the polarization curves
almost overlap each other as P" is increased from 1.25 bar to 3.25 bar.
Similar behavior was exhibited from the experimental results [36,37]
when anode pressure is varied between 1 bar to 6 bar.

(b) Transport properties

We next discuss the effect of transport properties at the anode
like the catalyst layer thickness, electronic conductivity, and porous
transport layer thickness on cell performance. Investigation of anode
side transport properties is crucial as the water splitting, which is the
rate limiting step, takes place on this side of the cell. The kinetics of
OER are more sluggish compared to the HER.

The effect of (67,) for supported and unsupported catalyst layers is
shown in Fig. 8(a). For the range of 6:‘1 considered in this work, we
notice that it has no significant influence on the supported catalyst. The
cell efficiency follows a similar trend for this type of catalyst layers. A
dependence on §¢, can be spotted in Fig. 8(a) for unsupported catalysts,
especially at cell voltages above 1.8 V. We observe that at these higher
voltages, the current density increases as §¢, decreases. This inverse
relationship between current density and ¢, can be explained by the
fact that a thinner ¢, reduces mass transport limitations and ohmic
losses, especially at higher current densities. The cell efficiency for
unsupported catalyst layers computed at 1.8 A/cm? is in line with this
observation.

From the preceding discussion, we observed that the influence of
6¢, is different on supported and unsupported catalyst layers. We now
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Fig. 9. Influence of transport properties such as (a) anode porous transport layer thickness (&

;‘”) and (b) Membrane thickness ((5,,,)) on polarization curves and cell efficiency.

The cell efficiency is computed at a constant current density of I = 1.8 A cm~2. The supported and unsupported catalyst layers are marked by solid and dashed lines, respectively.

investigate the role of the electronic conductivity of the catalyst layer
which results in such differential behavior. The ¢¢, is an important
parameter which governs the current density. As o, is varied from
4.5 x 1073 Sm~! to 4.5 x 1072 S m~! for unsupported catalysts, the
electron transfer rate increases as they face lesser ohmic resistance
with increasing electronic conductivity. This leads to an increase in
the current density with an increase in agl as shown in Fig. 8(b).
Consequentially, a 3.1% increase in cell efficiency in noted at I =
1.8 A/cm~2. In contrast, a 0.7% increase in cell efficiency is observed
for supported catalysts. An increase in o¢; has no significant effect on
the current density-voltage relationship, which signifies that o7, acts
as a non-limiting factor in determining current density for supported
catalysts. In general, when the catalyst layers are unsupported, the
effective electronic conductivity is significantly reduced owing to the
interference of the ionomer network [23].

For both supported and unsupported catalyst layers, with a fixed
electronic conductivity of 1250 S/m, we do not observe a significant
dependence of current density on 6%, when it is varied from 100 pm to
900 pm, particularly at lower cell voltages (<1.8 V). However, at higher
cell voltages we discern that a thinner 61‘;, promotes higher current
density.

The effect of membrane thickness on current density and efficiency
is presented in Fig. 9(b) for §,,, = 60 pm, 135 pm and 190 pm.
We observe that the current density decreases as §,,,,, increases. This
inverse relationship between membrane thickness and current density
is related to the lower transport resistance offered by a thinner mem-
brane. Thicker membranes increase the ohmic resistance by providing a
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longer path to the flow of H* ions across the membrane [38]. Therefore,
fewer hydrogen ions pass through the membrane and it results in
the decrease of the overall electrochemical reaction rate. However, a
thinner membrane could also lead to undesirable gas crossover [39]
and parasitic reactions.

While data-based models are known for their black-box nature, XGB
offers a higher degree of explainability when compared to ANNs [40].
Each decision tree of the XGB model is interpretable as it is split
based on the importance of a particular feature. The splitting pro-
cess is accomplished by minimizing the impurity in the child nodes,
thereby, determining the importance of each feature. On the other
hand, ANNs are complex to interpret as their predictions are based on
the distributed nature in which the information is transferred through
inter-connected nodes. Therefore, we use the XGB model to investigate
the importance of input features in predicting current distribution in
the following section.

3.2.4. Feature importance and sensitivity analysis (XGB model)

Fig. 10 lists the important features affecting the current density
predictions by the XGB model for (a) supported and (b) unsupported
catalyst layers. SHAP (SHapely Additive exPlanations) [41] is an ap-
proach based on cooperative game theory which provides information
on how much “gain” (SHAP value) a particular feature contributes to
the model’s prediction. The SHAP summary plot illustrated in Fig. 10
not only ranks the important features but also gives us insight into
how each of these parameters affected the current density predicted by
the XGB model. For both supported and unsupported catalyst layers,
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Fig. 10. Shapely additive explanations (SHAP) summary plots illustrating the relevant features and their influence in predicting current density for (a) Supported and (b) Unsupported

catalyst layers. The XGB model is deployed to compute the SHAP values.

operating temperature is the most influencing parameter. We clearly
observe that larger T values lead to higher current density as they
have positive SHAP values. The other prominent factors influencing the
current density are the membrane thickness, anode catalyst electronic
conductivity, and anode catalyst layer thickness. A similar observation
was observed in a recent work [5] on sensitivity analysis of PEMEC. It
was reported that anode kinetics and membrane thickness are critical
parameters governing the performance of PEMEC. From Fig. 10, we
deduce that 6,,,, and §¢, form a negative relationship with the current
density. This implies that increasing these parameters will result in the
reduction of current density. Input parameters such as T"" and o, shows
a positive relationship as illustrated from the corresponding SHAP
values for both types of catalyst layers. An interesting observation is
noted in the ranking of §,,, and o, for supported and unsupported
catalyst layers. We observe that for supported catalyst layers, 6,
has a higher influence on the model’s prediction over of. However,
in the case of unsupported catalysts, the effect of ¢, is greater than
Smem- From the preceding section, we have seen that for supported
catalyst layers of, acts as a non-limiting factor, and increase in its
value does not have a significant impact on the I-V relationship. Ad-
ditionally, in case of supported catalyst layers, the support material
becomes the primary pathway for electron transport. Consequently,
the role of catalyst particles as a medium of electronic transport is
reduced. These catalyst particles deposited on a support material have a
higher electrochemically active surface area (ECSA) and better catalyst
utilization resulting in higher catalytic activity per weight unit/mg
of catalyst material. As such, they can be a promising pathway to
reducing the overall system cost by decreasing the amount of deployed
catalyst material. Since, the support material is the primary pathway for
electronic transport, the SHAP results showcase §,,,,, as a parameter of
higher importance when compared to ¢¢, for supported catalysts. In the
case of unsupported catalyst layers, the contact between the catalyst
particles is the primary pathway of electronic contact. Therefore, the
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Table 4
Uncertainty range and probability distribution functions (PDF) of the input parameters,
taken into account for the global SA.

Parameter Unit Uncertainty range Distribution
Top °C [40, 80] U (40, 80)

P? bar [1,3] U,3)

8 pm [8,20] U(8,20)

épﬂ Hm [200, 800] (200, 800)
Smem pm [50, 180] (50, 180)

" (supported catalyst) S m™! [3.5,350] U(3.5,350)

i, (unsupported catalyst) S m™! [0.0035,0.085] 4(0.0035,0.085)

model’s predictions are more sensitive to the o

¢ than 6,,, in this

scenario.

We have also performed a sensitivity analysis (SA) study (Fig. 11)
to gain a deeper understanding of the interdependence between various
input parameters related to operating conditions and transport proper-
ties, and their resulting impact on the polarization behavior of PEMECs.
We treat these input parameters as independent random variables, as-
signing them a uniform probability density function (PDF), as detailed
in Table 4. Fig. 11 shows the first-order and total-order sensitivity
indices (SIs) for the averaged current density for both supported and
unsupported catalysts.

At this point, it is essential to clarify the difference between first-
order and total-order Sls. The total-order SIs account for both the
sensitivity due to first-order effects and the sensitivity resulting from
interactions between a specific parameter and all other parameters.
The sum of the total-order SIs is equal to or greater than one. If no
higher-order interactions are present, the sum of the first-order and
total-order SIs will equal one. From Fig. 11, we observe differences
between the first-order and total-order SIs for some input parameters,
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Fig. 11. The sensitivity for different features of the 1D physics-based PEMEC model charaterised by the mean, standard deviation and first-order Sobol indices of the averaged
potential for (a) supported and (b) unsupported catalysts. The XGB model is used to perform the sensitivity analysis.

particularly in their sums. These differences might indicate that higher-
order interactions have a significant influence on the polarization
behavior.

From Fig. 11(a) and in the case of a supported catalyst, the most
influential parameter for the polarization behavior after the operating
temperature is the PEM layer thickness. This finding was also reported
in our earlier study [5]. Another important finding of this analysis
is the high impact of the anode catalyst layer thickness. This is in
contrast with the SHAP analysis, but we need to emphasize here that
the anode catalyst layer thickness might be strongly correlated with
the effective electronic conductivity of the anode catalyst layer.This
can be attributed to the fact that SA assumes each input feature as
an independent parameter and does account to correlated parameters.
From Fig. 11(b) and for the case of an unsupported catalyst, the
most influential parameters are the operating temperature, the anode
catalyst electronic conductivity, and the membrane and anode catalyst
thickness. This is also confirmed by the SHAP plot in Fig. 10. From
global SA, we observe the anode operating pressure and PTL thickness
do not influence much the current density. The SHAP analysis has also
ranked them in the last two positions.

4. Conclusions

The influence of transport properties on the performance of PEMEC
with supported and unsupported catalyst layers is predicted through

three different machine-learning methods: SVR, XGB, and ANN. The
data required to train these models is generated from an analytical
model and a one-dimensional, non-isothermal, two-phase flow numeri-
cal model of PEMEC. The input features comprised parameters related
to operating conditions and transport properties of the MEA, in particu-
lar for the anode side. Statistical error metrics such as the MAE, RMSE,
and R?> were used to compare the predictive performance between
these three models on the training and test datasets. Upon comparison,
the ANN method is selected to conduct parametric analysis, and XGB
model was considered for performing sensitivity analysis for PEMEC
performance. The main conclusions are drawn as follows:

(1) When moving from an analytical model to a complex one-
dimensional physics-based model, there is a significant increase
in the number of parameters and computational cost. However,
the black-box nature of ML models does not lead to such a sig-
nificant increase in the training cost in order to provide accurate
predictions.

(2) Among the three tested models, the SVR model has shown the
least predictive performance on both the test datasets. This im-
plies that the hyperplane generated by the SVR model could not
capture the non-linearities, especially at higher voltages. Both
XGB and ANN performed well in predicting current density and
cell efficiency.

(3) In general, operating temperature has been shown to influence
the current density positively, while a decrease in membrane

14



K.A. Raman et al.

thickness leads to increasing current density. Furthermore, we
observe that for unsupported catalyst layers, the anode catalyst
conductivity and thickness influence the performance of PEMEC.
However, for supported catalysts, variation in these parameters
does not show any significant impact on PEMEC performance.
Feature importance study and sensitivity analysis revealed that
the operating temperature is the most important parameter affect-
ing the cell performance. This is followed by membrane thickness
and catalyst conductivity for supported catalyst, and vice-versa
for unsupported catalyst layers.

(€]

The current study sheds light into deploying machine learning tech-
niques, developed from data obtained from physics-based numerical
simulations, to model PEMEC. This is in contrast to the predominant
work done in using ML at an atomistic scale for catalyst screening
from DFT-generated databases. Further exploration in optimizing key
components of PEMEC and cell stack using principles of ML needs to
be undertaken in future works. Furthermore, the approach of combin-
ing data driven models with sensitivity analysis can be a promising
approach in real-time operation of PEM electrolyzer at an industrial
scale.

At this point, it is important to mention some limitations in using
only synthetic data obtained from physics-based numerical simulations.
Numerical simulations often rely on idealized boundary conditions,
material properties and simplifications of the governing equations.
Therefore, practical issues such as material impurities or unexpected
side reactions may not be totally captured by physics-based synthetic
data. This may result to inadequate model generalization in real-world
conditions. Along this direction, in the future, we aim to improve the
generalization of the models generated by the approach of this work by
adding experimental data from cell experiments. This will enhance the
robustness and accuracy of the developed surrogate models presented
in our work.
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Appendix A. The effect of training and test data split ratio

In general, the model should have sufficient data to learn the dif-
ferent patterns and varying relationships between the input parameters
and the target variables of the model. To illustrate the effect of split
ratio (SR), we have selected SVR and XGB models for dataset 2 and
investigate their effect on predicting the current density on the test
data. Table 5 presents the corresponding performance metrics. Two
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Fig. 12. Residual plots showing the comparison in predicting current density for (a) SVR and (b) XGB models for two different data split ratios (SR). The plots shown correspond

to the model developed from the 1D physics based model.
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Fig. 13. Shapely additive explanations (SHAP) summary plots illustrating the relevant features and their influence in predicting cell voltage. The plots shown correspond to the

model developed from the OD semi empirical model.

Table 5

The error metrics computed from the test part of the dataset 2 for different split ratios.
SVR XGB
Split ratio RMSE R? MAPE RMSE R? MAPE
80:20 0.046  0.999 98.37 x 10> % 0.0140 0.999 1.73 x 10> %
70:30 0.054  0.998 111.79 x 10> % 0.0137 0.999 1.75 x 10> %
60:40 0.0646 0.998 125.86 x 10> % 0.0147 0.999 1.68 x 10> %
50:50 0.08 0.997 146.07 x 10> % 0.0164 0.999 1.66 x 10*> %

distinct observations can be made from the error metrics shown in
Table 5. Firstly, we notice that the both RMSE and MAPE are increased
for the SVR model when SR is varied from 80:20 to 50:50. Secondly,
this effect of changing SR does not have a significant influence on the
model performance. This implies that the choice of SR is related to how
well the ML model learns from a given set of training data. Fig. 12
further elucidates this observation through the residual plots for the
(a) SVR and (b) XGB model.

Appendix B. Feature importance for dataset 1

Fig. 13 ranks the important parameters effecting the cell voltage
based on their SHAP values. We observe that the exchange current
density is the most important parameter influencing the cell voltage.
This is followed by the membrane thickness. When compared to these
two parameter, both the anodic and cathodic pressure do not show
significant influence in predicting cell voltage.

Data availability

Data will be made available on request.
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