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ABSTRACT

The RF performance of gate recessed MISHFET devices with an amorphous AIN layer was investigated by small-signal (S-parameter) mea-
surements. They reveal current gain and unilateral power gain cutoff frequencies of 125 and 138 GHz, respectively. These device parameters
were achieved for gate recessed MISHFET devices after applying a selective “step by step” etching T-gate formation procedure. The results
indicate that the combination of an amorphous AIN dielectric layer with the gate recessed AlGaN/GaN MISHFET structures affects the RF
performance in devices prepared for high frequency operation advantageously.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0252024

The combination of a gate recessing procedure with a variety of
oxide and insulator layers for III-nitride heterostructure based tran-
sistors has attracted growing attention during the last decade.' "’
The main research focus was centered on gate recessing proce-
dures with the aim of locally achieving the “full recessing state” of
the barrier layers’” and/or of reaching deeper, i.e., shallowly into
the GaN region targeting the fabrication of “normally off” devices.
The developments in this field were primarily driven by efforts to
achieve device performance improvement and RF parameters com-
parable with those reached by “normally on” HFET and/or HEMT
III-nitride based devices. Therefore, different III-nitride material
layer systems and device layouts and architectures were studied and
presented.’

Here, in this work, in contrast to the latest efforts and results
published by other groups,”*® we focus our attention on the perfor-
mance improvement of conventional AIGaN/GaN heterostructure
HFET devices with a planar device layout. Although this material
system and device architecture were extensively studied in the past,
they are perfectly suited for the demonstration and testing of fur-
ther technological innovations. Lately, we already demonstrated that
the device concept based on multi-level T-gate technology,”” which

is characterized by its simplicity of lithographical processes and
minimal processing steps, leads to advantageous performance. For
the sake of comparison, device parameters for HFET non-recessed
and gate recessed devices without an AIN layer were presented.”®
A comparison of the static transfer and transconductance char-
acteristics of the devices presented—for MISHFET structure with
gate recess and a deposited amorphous AIN layer (nominal thick-
ness 4 nm) and their counterpart non-recessed and gate recessed
HFET was reported in our previous study.'” The results from
CV measurements for all three types of devices, a non-recessed
HFET, a gate recessed HFET, and an AIN gate recessed MISH-
Fet alGaN/GaN/SiC, were also presented in our previous study.'’
We reported that the application of an amorphous AIN dielec-
tric layer has a direct impact on the charge carrier concentra-
tion up to ~6.2 x 10" cm™2, determined by CV measurements,
which is a more than 60% increase in comparison with the respec-
tive gate recessed devices without applied dielectrics. Nevertheless,
all three types of investigated devices (MISHFET device structure
with their non-recessed and recessed HFET counterparts) reached
maximal values of static transconductance in the range ~230 to
250 mS/mm.
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In this study, we present a detailed investigation of the high fre-
quency performance of gate recessed AlGaN/GaN MISHFETSs with
an amorphous AIN insulator in comparison with non-recessed and
recessed HFET counterparts. All the devices are fabricated from the
same material structure as it was introduced in our study.'’ The
core of the processes involved in the device preparation is based on
the so-called “step by step” selective metal etching procedure with
the aim to achieve sub-micrometer-sized gate lengths controllably
as was previously reported in detail.””*’ This simple technological
procedure allows us to improve the RF performance of any already
fabricated, e.g., HFET, MOSHFET device with gate lengths in the
micrometer range down to the several hundreds of nanometer or
even below 100 nm range as long as the mechanical and chemical
stability of the metal layer stacks as well as of the whole device is
ensured. Therefore, it should be noted that the advantageous selec-
tive metal etching process is suitable especially for material layer
systems, such as for the III-nitrides in our case, which are not
affected by an etching solution necessary for the procedure. The
etching solution (HCl acid) removes oxides on AlGaN and GaN very
thoroughly, as it was reported by Okada ef al.’’ Similarly, the chem-
ical inertness of AIN (used as a dielectric layer in this study) was also
demonstrated by Young and Duh.’' Hence, this simple technique
(etching procedure for formation of T-gate structures) in combina-
tion with the suitable dielectrics may overcome any possible etching
induced effects in the central “source-gate recessed—drain” region.

The material structure consists of a 2 um thick GaN buffer
layer, followed by a 20 nm thick Alyp29Gag71N barrier grown on
6H-SiC substrates by using the MOVPE technique.””” In the fol-
lowing, HFET devices were fabricated using conventional optical
and/or e-beam lithographical processes.”’ The ohmic Ti/Al/Ni/Au
contact metallization for source and drain electrodes was annealed
for 30 s at 850 °C in nitrogen ambient. The gate recess region with a
depth of 7 + 1 nm was performed with the help of Ar ion beam etch-
ing (Ar IBE).'” After that, 4 nm thick amorphous AIN layers were
nominally deposited by reactive magnetron sputtering. An amor-
phous AIN dielectric layer with a thickness of 4 nm was studied
with respect to its surface morphology after applying several etching
steps with HCI:H,O solution. The amorphous AIN layer after this
“step by step” etching procedure was inspected by AFM, confirming
that the procedure did not induce any pinhole formation. Finally,
conventional Schottky Ni/Au gate metallization was fabricated.

Figure 1 presents schematically a cross section of the gate
recessed amorphous AIN-AlGaN/GaN MISHFET devices with the
required different gate lengths achieved by using the above-
mentioned metal selective etching procedure. Hence, T-gate struc-
tures with different lengths are formed. The devices were investi-
gated in a comparative approach.

In order to characterize the RF properties of the devices pre-
pared, the small-signal scattering parameters were measured using
an Agilent 8510C automatic network analyzer. Figure 2 presents a
comparison of the determined current gain cutoff frequency fr and
maximum frequency of oscillation fn.x values as a function of the
gate length for three different devices. The data are shown for non-
recessed and gate recessed HFET structures and their amorphous
AIN-based MISHFET counterparts without T-gate (Lg = 500 nm)
and with T-gate (Lg etched down to 150 nm). As expected for all
three types of devices, both fr and fiax increased as the gate lengths
decreased down to ~150 nm remarkably. On the other hand, both
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FIG. 1. Schematics: cross section of the gate recessed MISHFET amorphous AIN-
AlGaN/GaN/SiC devices and material structure. The “nominal” gate length after the
lithographical process (gate definition and metallization) represents the “starting”
gate length. After applying a selective “step by step” (dashed lines) etching pro-
cedure forming T-gate structures, the “final” gate length is achieved (dotted lines).
Please note that the presented schematics do not reflect the “real” geometrical
lengths/dimensions of the fabricated devices presented in this study. Explicitly,
these schematics are only a guide to the eye.
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FIG. 2. Comparison of the current gain cutoff frequency fr and maximum fre-
quency of oscillation fmax values as a function of the gate length for AIGaN/GaN
HFET devices with non-recessed (empty symbols) and gate recessed (half-filled)
structures and their AIN-based MISHFET (full symbols) counterparts with and with-
out T-gate structure. Please note that the values presented in this graphic are for
devices with parameters close to average values.

characteristic frequencies for MISHFET devices are significantly
higher than those for HFET devices. As it could be expected, the
highest values for current gain and unilateral power gain cutoff fre-
quencies were achieved after the MISHFET structure‘s gate length
was reduced down to ~150 nm. In this case, the extracted current
gain cutoff frequency fr and the maximum oscillation frequency fiax
reached 125 and 138 GHz, respectively.

Figure 3 shows exemplarily the evaluation of the current gain
[h21? and unilateral power gain GU parameters as a function of
frequency for a single AIN-based gate recessed MISHFET with the
nominal gate length (T-gate) of 150 nm. The extracted current gain
cutoff frequency fr and maximum oscillation frequency fmax 115 and
160 GHz, respectively, differ from the values presented in Fig. 2.
This is a consequence of the dispersion of the process parameters
(e.g., gate recess depth and AIN thickness) over a large area, as was
presented in our previous study.'’
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FIG. 3. Small-signal microwave performance for the gate recessed MISHFET
amorphous AIN-AlIGaN/GaN/SiC device with a nominal 150 nm gate length (T-
gate structure). Please note that the presented data in this graphic represent an
example of values acquired on a single MISHFET device.

The current gain cutoff frequency as a function of the gate
voltage for HFET devices with non-recessed and gate recessed struc-
tures and their AIN-based gate recessed MISHFET counterpart is
shown in Fig. 4. These data demonstrate a significant enhancement
of the MISHFET cutoff frequency compared to both the HFET and
gate recessed devices. The presented data for gate recessed and non-
recessed devices in Fig. 4 are fully in agreement with the studies
published in the past by other groups.” *” As it was reported in our
previous study,'’ an expected increase in the gate capacitance—as
a consequence of the decrease in the gate—channel distance (for
the gate recessed device) was confirmed, and simultaneously, a peak
transconductance increase was observed in comparison with the
non-recessed devices. Here, it should be noted that the higher gate
capacitance of the active gate region lowers the influence of para-
sitic capacitance components leading to enhanced cutoff frequencies
as it was reported for the E-HEMT by Schwierz and Liou.’® On the
other hand, in contrast to the explanation above, we assume, that the
enhanced cutoff frequency of the MISHFET device with gate recess
in comparison with its gate recessed counterpart, can by explained
analogically as it was introduced for non-recesssd MOSHFET

140 4 4
MISHFET + gate recess

1204 /\

;:hT 100 \ =
o) HFET
o 801 D/D gate recess

40

40 -35 30 25 20 -15 1.0 05
gate voltage (V)

FIG. 4. Current gain cutoff frequency as a function of gate voltage for AIN-based
gate recessed MISHFET HFET devices with non-recessed (Vps = 12 V) and gate
recessed structures (Vps = 10 V) and their counterpart (Vps = 14 V). All the
devices have a gate length of 150 nm (T-gate structure).
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vs HFETs by the higher ratio of the transconductance to the gate
capacitance. This ratio mainly determines the cutoff frequency, as
it was by presented by Marso et al.’” and Kordos et al.*® Further-
more, it could also be explained by the transconductance increase as
a consequence of the surface trap reduction due to the amorphous
AIN dielectric layer and the increase in the electric field below the
gate, analogically as it was demonstrated by Al O3 dielectric MOSH-
FETs by Kordos et al. This resulted among others in an enhance-
ment of the channel electron mobility in the device.” Nevertheless,
the deeper understanding of the physical mechanism, comprising
and explaining the effects mentioned above and reported in the
past, will be the scope of a theoretical study under preparation by
Gregusova et al.

In conclusion, AlIGaN/GaN-based MISHFETSs using an amor-
phous AIN insulator and recessed gate were prepared and their
high frequency performance was investigated. The properties of
non-recessed and gate recessed HFET structures are shown for com-
parison too. Gate recess was performed with the help of Ar IBE.
The step-by-step etching procedure was used to prepare T-gates
with different gate lengths. The obtained results show a signifi-
cant improvement in RF performance of gate recessed MISHFETSs
compared to non-recessed and recessed counterparts. The extracted
current gain cutoff frequency fr and the maximum oscillation fre-
quency frax for MISHFETSs with a gate length of 150 nm reached
125 and 138 GHz, respectively. This demonstrates the high perspec-
tives of gate recessed AlIGaN/GaN MISHFETs with an amorphous
AN insulator for the preparation of efficient microwave devices.

This work was partially supported by the VEGA Project No.
2/0068/21 (Slovak Republic) and Grant No. APVV- 21-0365 project
(Slovak Republic). In addition, all authors thank A. Fox from
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