
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

HTMPC: A heavily templated C + + library for large scale particle-based 

mesoscale hydrodynamics simulations using multiparticle 

collision dynamics ✩

Elmar Westphal a, , Segun Goh b, , Roland G. Winkler b, , Gerhard Gompper b, ,∗

a Peter Grünberg Institute and Jülich Centre for Neutron Science, Forschungszentrum Jülich, 52425 Jülich, Germany
b Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

A R T I C L E I N F O A B S T R A C T 

https://go.fzj.de/HTMPC

Keywords:

Mesoscale hydrodynamic simulation

Multiparticle collision dynamics (MPC)

We present HTMPC, a Heavily Templated C + + library for large-scale simulations implementing multi-particle 
collision dynamics (MPC), a particle-based mesoscale hydrodynamic simulation method. The implementation is 
plugin-based, and designed for distributed computing over an arbitrary number of MPI ranks. By abstracting 
the hardware-dependent parts of the implementation, we provide an identical application-code base for various 
architectures, currently supporting CPUs and CUDA-capable GPUs. We have examined the code for a system 
of more than a trillion MPC particles distributed over a few thousand MPI ranks (GPUs), demonstrating the 
scalability of the implementation and its applicability to large-scale hydrodynamic simulations. As showcases, 
we examine passive and active suspension of colloids, which cofirms the extensibility and versatility of our 
plugin-based implementation.

Program summary

Program Title: HTMPC

CPC Library link to program files: https://doi.org/10.17632/xnxh68zhbt.1

Licensing provisions: MIT

Programming language: C + + 17, CUDA C + + (optional), MPI (optional)

Supplementary material: Supplementary Information, User Manual

Nature of problem: Complex fluids in soft, active, and living matter are characterized by a wide range of 
relevant length- and time-scales, from nanometers to millimeters, and from sub-microseconds to seconds. Their 
dynamics is often governed by the hydrodynamics of the embedding aqueous medium. Thus, it is essential for 
the numerical study of such systems to develop efficient simulation techniques and highly parallel computer 
codes, especially when large system sizes and emergent collective behavior are considered. Several mesoscale 
simulation techniques have been developed in the last decades for this purpose. Multi-particle collision dynamics 
(MPC), a particle-based hydrodynamics simulation technique, is a promising ansatz for such an endeavor. It is 
also important to develop an easy-to-extend implementation, so that the code can be adapted to various soft and 
living matter systems as desired.

Solution method: We develop an implementation of MPC that can exploit large-scale high-performance computing 
resources for hydrodynamic simulations of complex fluids. The code provides a C + + template library, which is 
plugin-based and can be extended by user-written plugins, implementing particles or objects interacting with the 
surrounding fluid. Calculations can be distributed over an arbitrary number of MPI ranks and accelerated with the 
current implementation supporting CUDA-capable GPUs. The code includes essential features of state-of-the-art 
MPC algorithms, e.g., thermostat, local angular-momentum conservation, and a variety of boundary conditions, 
such as periodic, no-slip (both also supporting shear flow) and slip. Simulation data can be written to and read 
from disk.

Additional comments including restrictions and unusual features: The code provides an option to produce perfectly 
reproducible particle trajectories, independent of the MPI setup of a simulation system, as long as the underlying 

✩ The review of this paper was arranged by Prof. David W. Walker.

* Corresponding author.

E-mail address: g.gompper@fz-juelich.de (G. Gompper).

https://doi.org/10.1016/j.cpc.2024.109494

Received 25 July 2024; Received in revised form 13 December 2024; Accepted 26 December 2024 

Computer Physics Communications 309 (2025) 109494 

Available online 8 January 2025 
0010-4655/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0001-7625-2595
http://orcid.org/0000-0003-3027-8815
http://orcid.org/0000-0002-7513-0796
http://orcid.org/0000-0002-8904-0986
https://go.fzj.de/HTMPC
https://doi.org/10.17632/xnxh68zhbt.1
mailto:g.gompper@fz-juelich.de
https://doi.org/10.1016/j.cpc.2024.109494
https://doi.org/10.1016/j.cpc.2024.109494
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109494&domain=pdf
http://creativecommons.org/licenses/by/4.0/


E. Westphal, S. Goh, R.G. Winkler et al. 

architecture and selected features are identical. It shows good scaling behaviors for sufficiently heavy workloads 
even for very large problems utilizing thousands of GPUs. 

1. Introduction

Solid bodies immersed in fluids experience hydrodynamic forces by 
local fluid motion, which can be of thermal origin on micro- and sub

micrometer scales or initiated by the motion of other immersed objects. 
Such hydrodynamic interactions are long range in nature and there

fore determine the dynamical and structural properties of suspensions. 
They are particularly relevant for soft matter systems, which encompass 
traditional complex fluids such as amphiphilic mixtures, colloidal sus

pensions, polymer solutions, but also biological matter [1]. Soft matter 
systems are characterized by a wide range of relevant length and time 
scales -- from the atomic scales of solvent particles to the mesoscale of 
colloidal particles, and the macroscopic scale of phase transitions -- and 
they are sensitive to thermal fluctuations and to weak perturbations [2]. 
Theoretical and simulation studies reveal the ifluence of hydrodynamic 
interaction on the dynamics of polymers [3--5] and colloids [6,7] in so

lution in absence and presence of flow fields [4,8]. Similarly, biological 
fluids [9] share many rheological properties with soft-matter systems. 
For example, in blood flow, not only the collisions between the de

formable red blood cells but also the hydrodynamic interactions due 
to flow of the embedding blood plasma are essential [10,11]. Cellu

lar flows may also involve active components, so that their behavior 
can then be modeled as active fluids. Nature provides a plethora of au

tonomous microswimmer [12,13], particular examples are flagellated 
bacteria [14,15] and sperm cells [16], which propel themselves via hy

drodynamic interactions.

The presence of the disparate time, length, and energy scales in 
soft matter systems renders the application of conventional (all atom) 
simulation techniques challenging. To mimic the behavior of atomistic 
systems on the length scale of the mesoscopic objects requires the appli

cation of ``coarse-grained'' or mesoscopic approaches [1]. Accordingly, 
mesoscale simulation methods have been developed such as Dissipative 
Particle Dynamics (DPD) [17,18], Lattice Boltzmann (LB) [19--21], Di

rect Simulation Monte Carlo (DSMC) [22,23], and multiparticle collision 
dynamics (MPC) [1,24].

Among the mesoscale simulation techniques, MPC is particularly 
suitable for simulations on massively parallel GPU-based supercomput

ers [25,26]. The main advantage is that the interactions and momentum 
exchange between the fluid particles occur locally in collision cells, 
which renders the calculation of large inter-particle distances obsolete, 
but still gives rise to long-range hydrodynamic interactions [5,27]. In 
addition, the streaming of every fluid particles is carried out indepen

dently. Moreover, MPC incorporates thermal fluctuations by construc

tion. Therefore, MPC is suitable for massive parallel computing and can 
be utilized to investigate large thermal systems beyond scales that a sin

gle processor can handle.

Since the original formulation in 1999 [28], several variants and re

visions of MPC have been proposed [1], and it has been applied to a 
wide range of physical problems. Particularly, the transport properties 
of MPC fluids have been obtained theoretically [29--33] and its hydro

dynamic correlation function has been derived [27]. The applications 
cover such diverse aspects as sedimenting colloidal suspensions [34,35] 
and polyelectrolyte electrophoresis [36], liquid crystals [37], polymeric 
systems and protein solutions [4,38--47], ferro- [48] and nanofluids 
[49], and even self-propelled particles [50--54], active nematics [55] 
and active polymers [56,57], as well as biological systems such as sus

pensions of bacteria [14,15,58--60], sperm [61--63], and parasites, e.g., 
trypanosomes [64] and Plasmodium falciparum [65].

In this article, we present a highly efficient parallel implementation 
of MPC, which is suitable for both CPU- and GPU-based computers, and 
has been evolved from the previous GPU-based implementation pre

sented in Ref. [25]. Our new code has been tested up to 1.5 trillion 
MPC fluid particles on 3,540 NVIDIA A100 GPUs.

2. Multiparticle collision dynamics

In MPC, a fluid is represented by 𝑁𝑠 point particles of mass 𝑚 with 
the positions 𝒓𝑖 and the velocities 𝒗𝑖 (𝑖 = 1,… ,𝑁𝑠). Their time evolution 
is described by a two-step dynamics of alternating streaming and colli

sion steps. In the streaming step, the MPC particles move ballistically 
according to

𝒓𝑖(𝑡+ ℎ) = 𝒓𝑖(𝑡) + ℎ𝒗𝑖, (1)

where ℎ is the MPC time step. The inter-particle interactions are mod

eled via a momentum conserving stochastic process in the collision 
step [1,24,28]. Here, all MPC particles are sorted into the cells with 
side length 𝑎 of a simple cubic lattice, each of which contains on average ⟨𝑁𝑐⟩ particles. Then, in the stochastic rotation dynamics (SRD) variant 
of MPC [1], the relative velocities 𝒗𝑖,c ≡ 𝒗𝑖 − 𝒗cm of the particles within 
a cell with respect to the center-of-mass velocity 𝒗cm ≡ (

∑𝑁𝑐

𝑖=1 𝒗𝑖)∕𝑁𝑐 of 
the cell are rotated by a fixed angle 𝛼 around a randomly oriented axis 
according to

𝒗𝑖(𝑡+ ℎ) = 𝒗cm(𝑡) +𝐃(𝛼)𝒗𝑖,c(𝑡), (2)

where 𝐃 denotes the rotation matrix. The orientation of the rotation axis 
is independently chosen for every cell and collision step. Notably, the 
entire collision lattice is randomly shifted before every collision step to 
insure Galilean invariance [29,66].

Several theoretical and technical advances have been achieved in 
the course of the development of MPC. Here we summarize some of 
the important issues, which have also been taken into account in our 
implementation.

Angular-momentum conservation Violation of angular-momentum con

servation may lead to non-physical torques due to non-symmetric com

ponents in the stress tensor [67--69]. To avoid such artifacts, cell

level angular-momentum conservation can be enforced (MPC-SRD + a) 
by adding an additional constraint to the velocity in Eq. (2) at each col

lision step [68,70],

𝒗𝑖(𝑡+ ℎ) = 𝒗cm +𝐃(𝛼)𝒗𝑖,c +𝝎c(𝑡) × 𝒓𝑖,c, (3)

where 𝒓𝑖,c ≡ 𝒓𝑖 − 𝒓cm is the relative position with respect to the center

of-mass position 𝒓cm, and the angular velocity is given as

𝝎c =𝑚𝐈−1c
𝑁𝑐∑
𝑖=1 

(
𝒓𝑖,c × (𝒗𝑖,c −𝐃(𝛼)𝒗𝑖,c)

)
. (4)

Here, 𝐈c is the moment-of-inertia tensor of the particles in the collision 
cell with respect to the center of mass. 

Thermostat As the MPC-SRD algorithm given by Eq. (2) conserves en

ergy, the fluid shows thermodynamic behavior of a microcanonical 
ensemble. Whenever a canonical ensemble is appropriate, i.e., a con

stant temperature is desired, the system has to be thermostatted. This is 
achieved by a Maxwell-Boltzmann scaling (MBS) approach [71], which 
rescales the relative velocities in the cells after each collision step via 
the scaling factor 𝜅

𝒗
′
𝑖
= 𝒗cm + 𝜅𝒗𝑖,c. (5)

The scaling factor itself is determined from the kinetic energy of the 
particles within a cell, i.e.,

Computer Physics Communications 309 (2025) 109494 

2 



E. Westphal, S. Goh, R.G. Winkler et al. 

Fig. 1. Schematic overview for an example use case. (a) Partial steps are dfined as an enumeration in the cofiguration class. (b) Plugins containing specialized 
functor templates to be called at partial steps listed in (a). (c) The plugin call sequence ultimately generated at compile time.

𝜅 =
√

2𝐸𝑘∑
𝑖 𝑚𝒗

2
𝑖,c
, (6)

where the random kinetic energy 𝐸𝑘 suffices the distribution function

𝑃 (𝐸𝑘) =
1 

𝐸𝑘Γ(𝑓∕2)

(
𝐸𝑘

𝑘B𝑇

)𝑓∕2
exp

(
−

𝐸𝑘

𝑘B𝑇

)
, (7)

with 𝑓 = 3(𝑁𝑐 −1) the number of degrees of freedom and Γ the gamma 
function.

Boundary conditions In addition to periodic boundary conditions, the 
fluid can be in contact with cofining walls and surfaces of embedded 
particles such as colloids. Slip as well as no-slip boundary conditions can 
be employed in MPC. During the streaming step, collisions between MPC 
particles and boundaries result in a momentum change. Specifically, all 
the MPC particles which have crossed boundaries are translated back 
onto the boundaries. For no-slip boundary conditions, the bounce-back 
rule is applied, where the velocity is simply reverted, i.e., 𝒗𝑖 → −𝒗𝑖. 
For slip-boundary conditions, specular rflection is employed. In case 
of, e.g., interactions with solid bodies such as colloidal particles, mo

mentum conservation implies a change of the linear momentum of MPC 
particles as well as the linear and angular momenta of the colloid. In 
the collision step, collision cells are added either in walls or larger im

mersed particles. The part of these collision cells in walls or immersed 
particles are filled with uniformly distributed phantom particles, which 
are identical to MPC particles, such that the whole collision cell con

tains the same average number ⟨𝑁𝑐⟩ of fluid particles [33,72]. This 
enhances wal-fluid and colloi-fluid interactions and reduces bound

ary slip [33,72]. Specifically, it is required due to the random shift of 
the collision lattice, otherwise the particle number varies in cells cut 
by boundaries. The velocities of the phantom particles are taken from 
a Gaussian distribution with zero mean and variance 

√
𝑘B𝑇 ∕𝑚. These 

phantom particles participate in the collision step as all other fluid par

ticles.

External fields A constant gravitational force along a coordinate axis 
in combination with two parallel cofining walls leads to a parabolic 
Poiseuille flow [73]. Importantly, in this case, the MPC fluid has to be 
thermalized [74].

Parameters The simulation of fluid properties requires a suitable choice 
of the MPC parameters [5,34]. By the nature of the MPC collision pro

cess, hydrodynamics in the fluid appears on length scales 𝜆𝑐 larger than 
the collision cell only. The actual length scale itself depends on the 
collision time step and increases with increasing collision step [27]. 
Moreover, in fluids, momentum transport dominates over mass trans

port. This is expressed by the Schmidt number 𝑆𝑐 = 𝜈∕𝐷, where 𝜈 is 
the kinematic viscosity and 𝐷 the diffusion coefficient of the MPC parti

cles [75]. In MPC, a large Schmidt number is achieved for small collision 
step sizes and large collision angles. Hence, we recommend to choose 
these values in the range ℎ ≤ 0.1

√
𝑚𝑎2∕(𝑘B𝑇 ) and 𝛼 > 90◦ [27,75].

Proper hydrodynamics for objects embedded in MPC such as colloids 
or polymers requires an appropriate choice of their size. Because of the 
condition 𝜆𝑐∕𝑎 > 1, a colloid radius should be 𝑅𝑐∕𝑎 ≥ 3 (see Sec. 5) [5]. 
Similarly, in a simulation of a polymer its bond-length and monomer 
diameter should be larger than the collision cell size [39].

Due to the point-particle nature, a MPC fluid is compressible with an 
ideal gas equation of state. The compressibility can be controlled by the 
average number of fluid particles in a collision cell. For systems with 
passive colloids or polymers, ⟨𝑁𝑐⟩ = 10 is recommended. However, in 
systems with self-propelled particles, e.g., squirmers, a larger average 
number ⟨𝑁𝑐⟩ may be necessary to avoid depletion effects, particularly 
at large concentrations; here, we suggest ⟨𝑁𝑐⟩ = 50 for Péclet numbers 
in the range Pe ∼ 101 − 102 [53,54,76] (see Sec. 5).

3. Implementation

3.1. Code structure

Basic structure The code is a C + + 17 template library. It consists of 
a class template representing a simulation environment using plugins 
that contain the simulation data and/or the code to manipulate it. This 
environment is generated using rules and definitions provided by a de

scriptor class that is passed as a template argument. This class contains 
a sequence of plugin templates, an enumeration of partial simulation 
steps to be executed in every iteration (see Fig. 1), an arbitrary number 
of type-declarations and constexpr (compile time) variable-declarations 
and a sequence of parsers to interpret these declarations.

Computer Physics Communications 309 (2025) 109494 

3 



E. Westphal, S. Goh, R.G. Winkler et al. 

Partial simulation steps In each MPC step a number of operations is per

formed on the simulation data. To coordinate these operations, each 
iteration step can be divided into an arbitrary number of partial steps, 
such as the movement of fluid particles, the generation of rotation ma

trices, etc. As the partial steps have to be performed in a given order, 
they are dfined as an enumeration. The code allows the user to extend 
this basic enumeration by inserting an arbitrary number of additional 
steps into it, provided all existing steps remain in their original order.

Plugins The data and code for the simulation are stored in plugin class 
templates. These are listed in a sequence given in the cofiguration class 
and are instantiated according to rules also given there. In the generated 
simulation class, instantiations of all plugin templates specialized by the 
cofiguration class are inherited and can be accessed in different, con

figurable ways. The plugins may contain functor templates specialized 
for each partial iteration step, containing the code to be performed at 
that particular step. Besides data and code to be performed regularly at 
certain times in the iteration step, plugins can also represent boundary 
conditions by adding additional functor templates that can be applied to 
particle data in certain situations such as particle movement or process

ing. The included plugins implement the MPC fluid, MPC collision cells, 
different boundary conditions, etc. Additional plugins can be added fol

lowing the given interface.

Generating iteration steps As described, each iteration step is divided 
into a number of partial steps. During each iteration step the partial 
steps will be performed in the order given in their enumeration. Dur

ing each partial step, all plugins will be traversed in the order given in 
the plugin sequence and if they contain a functor template specialized 
for that particular step, the functor will be instantiated to be called. The 
only exception to this is the initialization step, the functor of which is 
only called once after the simulation environment is constructed. Only 
during initialization, it is possible to change the order of execution of the 
plugins, making it possible to process dependencies between them. Oth

erwise, all dependencies must be implicitly resolved by the given order 
of plugins. Regular operation will commence as soon as all plugins are 
initialized. If the initialization of one or more plugins fails permanently, 
the program will be aborted.

3.2. Distributed simulation

The code is designed to optionally distribute the workload over an ar

bitrary number of MPI ranks, which is achieved by splitting the simula

tion system into spatial subdomains. In addition, particles are reassigned 
to the subdomains covering their current position at regular intervals. 
Between these reordering operations, particles that leave their subdo

mains are temporarily sent to the appropriate subdomain for processing 
and their updated velocities are imported back.

3.2.1. Domain decomposition

The amount of necessary communication depends on the number of 
particles exchanged, and therefore, the surface area of the subdomains. 
For optimal performance, the domain decomposition algorithm mini

mizes the surface area of subdomains, by generating subdomains close 
to cubic shapes. To this end, the total number of subdomains given by 
the number of MPI ranks is factorized at first. The currently longest side 
of the system will then be subsequently divided by the largest remain

ing factor in a loop over all factors from the factorization. If a shear 
flow is considered, the system is not split along the corresponding dis

continuous axis to avoid difficulties during particle exchanges resulting 
from the fact that we can not dfine a fixed neighborhood relation be

tween subdomains due to the continuous shifts in shear-offset across the 
boundaries. Lastly, the number of remaining collision cells in each di

rection, given as the remainder of the system size divided by the number 
of domains, will be distributed evenly over the subdomain sizes, i.e. a 
size of 20 splits into 3 will result in partial sizes of (7,7,6).

3.2.2. Temporary exchange of particles for processing

During every iteration step, the respective collision cell of each MPC 
particle is calculated from the position of particles, the random shift of 
the current iteration, and applicable boundary conditions. If the colli

sion cell of a MPC particle is outside the subdomain the particle is cur

rently assigned to, then the particle must temporarily be transferred to 
the respective subdomain and processed there. This implementation was 
chosen over the usage of overlapping subdomains for several reasons: 
while every particle is always a member of exactly one cell, overlapping 
cells may be shared between 2, 4 or 8 subdomains for surface, edge 
or corner cells respectively, leading to more complex communication 
patterns when distributing partial and redistributing combined results. 
Depending on the cofigured features, this may happen more than once 
during each iteration step, because the change in angular momentum of 
each cell can only be calculated later in the step. Additionally, each fluid 
particle traveling beyond the overlapping cells of its assigned subdomain 
would require the whole system to be spatially reordered immediately, 
because otherwise its properties could not be processed properly. This 
would require additional monitoring effort and possibly more frequent 
expensive reordering.

Each subdomain has one export buffer - similar to the fluid parti

cle storage - for preparing sets of particles to be sent to other domains, 
and one import buffer for receiving particles from other domains. These 
buffers only contain the data members necessary for the currently acti

vated feature set. Whenever a particle needs to be exported, the counter 
of particles to be sent from the current subdomain to the destination 
subdomain is incremented, and a data triplet of the particle index, des

tination subdomain, and previous export count (as a destination-relative 
index) is appended to a vector. After finding all particles to be exported, 
the prfix sum of the export counts of destination subdomains is calcu

lated, which represents the offsets for each destination subdomain in the 
output buffer. Then the vector of data triplets is traversed and the data 
of each particle contained in the traversed vector is copied to the export 
buffer position calculated by adding the destination offset from the pre

fix sum and the destination-relative index of the particle. In this way, a 
buffer containing particle data is ordered by their respective destination 
subdomains, which is efficient especially on GPUs, as each step can be 
performed in parallel and the export buffer for all domains can be built 
with a single kernel call.

In almost all cases fluid particles are received from direct neighbors 
and the exchange is done using a MPI_Neighbor_alltoall collective 
call. Otherwise, a more expensive fallback path using MPI_Alltoall is 
used. Then a prfix sum is calculated over the import counts, resulting 
in the import offsets for each subdomain. Such obtained import- and 
export-counts and -offsets are then used in neighbor-collective or dis

crete MPI-calls to exchange the necessary data members, which can be 
done without explicitly transferring data to/from the GPUs by using a 
CUDA-aware MPI implementation. Now the code is ready to perform all 
remaining MPC steps, after which the processed particle velocities are 
transferred back to their original subdomains and copied back from the 
exchange buffer to their respective particles.

3.2.3. Permanent exchange of particles during reordering

During the course of the simulation, a growing number of particles 
move away from the subdomain they were originally assigned to, result

ing in a higher communication load as well as a growth in buffer size. To 
avoid such penalty in performance, the code reassigns (or reorders) par

ticles to the domains where they are most likely processed. Reasonable 
reorder intervals must balance the time spent for reordering particles 
and the time gained through faster operation, which also depends on 
the time step length and system architecture. In most setups, an optimal 
interval lies between ten and a few hundred iteration steps. The algo

rithm for transferring the particles is the same as described in Sec. 3.2.2

for temporary particle transfers. After transfer, however, the relocated 
particles are inserted and deleted to/from the permanent particle sets of 
the domains.

Computer Physics Communications 309 (2025) 109494 

4 



E. Westphal, S. Goh, R.G. Winkler et al. 

Fig. 2. Influence of particle reordering on runtime for 200 iteration steps with 
AMC. Here, 𝐿 = 128𝑎, ⟨𝑁𝑐⟩ = 10, ℎ = 0.05𝑎

√
𝑚∕(𝑘B𝑇 ), and 𝛼 = 130◦ . The test 

runs were performed on a GTX2070 GPU. The definitions of labels are given 
in Table S1 (SI). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

During the exchange step, the particles in each subdomain are also 
spatially reordered, which is benficial for performance in general, as 
shown in Fig. 2, and therefore, is also applied to single-rank systems. Re

ordering the particles in each subdomain proceeds similarly to the filling 
of export buffers described above, but particles are ordered by collision 
cells instead of destination subdomains. Particle counts per cell are de

termined, using the particles still residing in their current subdomain 
and, in case of distributed systems, particles received from other sub

domains in the import buffer. The current particle counts per cell are 
again used as cell-relative indices and the prfix sum of the final parti

cle counts is used as cell offsets for the reordered particles.

To save memory, reordering is done property-wise, which necessi

tates only a temporary reorder buffer with the size of the largest data 
member of the particles (usually the velocity). Specifically, each data 
member of the currently resident particles is copied to the temporary 
buffer. The original data storage is resized to fit the data of all remain

ing resident plus imported particles. Then the data of particles in the 
temporary buffer that are not exported and those from the newly im

ported ones in the import buffer are copied to their new positions in 
the resized main data location. It is also possible to perform this step 
component-wise for each particle property, to reduce the reorder buffer 
size by a factor of three, which in turn, corresponds to roughly 15-25% 
of the total memory footprint. Due to inefficient memory access pat

terns and repeated access, however, it comes with a cost of increasing 
the runtime by a few percent, the exact value of which depends on the 
reorder intervals.

3.3. Reproducibility

Additions are not always associative for floating point values, i.e., 
(𝑎 + 𝑏) + 𝑐 is not necessarily equal to 𝑎 + (𝑏 + 𝑐) [77,78]. In a multi

threaded or distributed code, such non-associativity causes diverging 
results between runs with identical initial conditions, because the or

der of operations is undfined and also depends on the distribution of 
data. Even small fluctuations will result in significantly different particle 
trajectories after a sufficient number of iterations. While each of these 
runs is still valid, perfectly matching trajectories may be desirable, for 
justfication or debug purposes.

To achieve this, the code optionally provides bit-perfect repro

ducibility of particle trajectories by replacing the floating point summa

tions with fixed point summations, where fixed point numbers assign 
a fixed count of bits to the integral part [79]. If the resulting range is 

not dfined appropriately, oveflows may occur leading to undfined be

havior (see e.g., Ref. [80]) and invalidating the results, which implies an 
inherent tradeoff between range and precision. For typical simulations 
the range of values of the cell parameters is limited and can be well esti

mated, allowing us to determine the necessary precision for fixed point 
numbers. The generation of initial particles is also adapted accordingly 
to achieve perfect reproducibility not only on a single GPU, but also 
on distributed runs, independent of rank counts or domain decomposi

tions, as long as the same system architecture, compiler, and compiler 
settings are used. Even though the summations themselves should not 
be ifluenced by associated parameters, different hardware components, 
numerical algorithms or optimizations may introduce subtle changes in 
the results of other operations. Additionally, the order of particles in 
memory or in files saved to disk is undfined due to their dependence 
on the domain decomposition layout and the undfined order of atomic 
operations.

Fluid particle ID In the given implementation, unless particle reorder

ing is switched off in an undistributed system, it is not possible to follow 
certain particles by their offset alone due to the regular exchange of par

ticles between subdomains and/or particle reordering for performance 
purposes. The code provides an option that assigns an integer tag to 
each fluid particle. If the respective option is enabled, this tag is, by 
default, generated as a consecutive, unique number for each particle, 
which is independent of the domain decomposition for otherwise iden

tical systems. Opposed to the current storage offset or subdomain, the 
ID is permanently assigned to a certain particle and can be used to trace 
that particle over the course of a simulation. In combination with the re

producibility feature, fluid particles with the same unique initial ID are 
guaranteed to have identical trajectories over different runs for an iden

tical system setup. The ID-value can, however, be changed by the user 
at any time during the simulation to arbitrary (and also non-unique) 
numbers and can therefore be adopted to i.e. mark or group certain par

ticles.

3.4. Additional code features

Here additional code features are summarized. More detailed infor

mation can be found in Supplementary Information (SI).

Thermostat The implementation of the Maxwell-Boltzmann scaling 
(MBS) thermostat [71] mainly consists of two components. First, the 
kinetic energies of all particles are summed up cell-wise during parti

cle processing. Then a scaling factor for each cell is calculated during 
cell processing, which is applied to all particle velocities in the cell dur

ing the particle rotation. Applying the MBS thermostat increases total 
calculation time by approximately 10%, as shown in Fig. 3.

Local conservation of angular momentum Angular-momentum conser

vation (AMC) adds new calculation steps and a significant amount of 
additional calculations to several other steps. Consequently, conserving 
local angular momentum in combination with the thermostat option will 
increase calculation times by a factor larger than 2, see Fig. 3. Due to 
the significantly higher number of operations and their respective error 
propagation, the residual momentum is roughly two orders of magni

tude higher than for plain MPC.

Boundary conditions Boundary conditions are implemented as special 
plugins with additional functionality. Like all other plugins, they may 
have their own state, data, and code. Additionally, they have a func

tor template that can be specialized for certain situations, usually when 
a particle is moved or when it is processed after random shift of the 
collision-cell lattice was applied. Different boundary conditions can be 
set for different axes of the simulation system. Using the appropriate 
interface, boundary condition plugins can be added ad libitum. The in

cluded plugins support periodic, slip, and no-slip boundary conditions. 
Optionally, shear flow can also be added.

Computer Physics Communications 309 (2025) 109494 

5 



E. Westphal, S. Goh, R.G. Winkler et al. 

Fig. 3. Feature dependence of the time spent in partial steps. Here, 1000 it
eration steps with 𝐿 = 100𝑎, ⟨𝑁𝑐⟩ = 10, ℎ = 0.05𝑎

√
𝑚∕(𝑘B𝑇 ), 𝛼 = 130◦, and a 

reorder interval of 200 were performed on a GTX2070 GPU. The definitions of 
labels are given in Table S1 (SI).

Phantom particles The code provides specialized particle sets that can 
be used by plugins for the efficient processing of phantom particles. In 
contrast to standard fluid or solute particles, phantom particles are not 
subject to movement or distribution, but are created in the subdomain 
where they are to be processed while random shifts are taken into ac

count. Plugins generating phantom particles initiate their processing, 
rotation of velocities, and restoration of their local angular momentum 
at appropriate times, if applicable.

Gravity It is possible to apply a constant gravitational force parallel to 
one of the axes. The application can be combined with other options 
and the implemented boundary conditions.

3.5. Hybrid CPU/GPU implementation

The code is designed for distributing the system across an arbitrary 
number of domains, each of which is processed by one MPI rank. The 
implementation of intra-domain operations favors GPU acceleration, but 
also works on one CPU core per MPI rank. CPU-based shared memory 
parallelization like OpenMP for intra-domain operations was also tested, 
but the performance turned out to be lower than that of a more fine

grained domain-decomposition distribution.

3.5.1. Identical code base for different architectures

Most of the code processes either particle- or cell-based operations. 
Each operation is implemented as a functor which is called once for 
every cell or particle, and is coded to be hardware agnostic for better 
maintainability and compatibility between platforms. Hardware depen

dent operations, possibly leading to atomic operations, are hidden in 
wrapper classes that are implemented for their designated target archi

tecture. Currently, plain CPU code and CUDA-based GPU acceleration 
on NVIDIA GPUs are implemented, but the concept is modular and could 
be extended to other architectures without the need to rewrite any of 
the actual application code.

3.5.2. GPU memory management

Accessing CPU memory from a GPU or vice versa is usually not pos

sible, or comes with a significant performance penalty for most of the 
relevant past and current GPU architectures. In the code, we employ 
the CUDA-based implementation providing an allocator for so-called 
Managed Memory, which is a mechanism providing automated data mi

gration on older GPUs or memory paging on more recent hardware, 
avoiding the need to explicitly migrate data. Still, alternating access to 
the same data elements from the CPU and GPU leads to implicit data 
movement and can significantly hurt performance. For instance, access 

to seemingly independent data residing on the same memory page may 
cause performance issues related to concurrent access of this page by 
the application running on the GPU and the MPI library running on the 
CPU. These issues have been addressed by padding managed memory 
allocations.

3.5.3. GPU acceleration

Code generation and architecture selection is based on C + + 17 tem

plate mechanisms. The only external dependency is an appropriate 
CUDA compiler. The architecture dependent functionalities that had to 
be implemented include, among others, an STL-compatible, GPU-based 
vector template, reduction routines, prfix sums and accumulator classes 
wrapping atomic additions. As more and more standard library routines 
are provided in GPU-parallelized versions, some implementations may 
be updated accordingly in later releases.

3.5.4. Atomic operations

While early releases of our GPU-based MPC routines used a list

based approach for processing the particles belonging to each collision 
cell [25], the current version uses atomic operations for all summations 
of this kind. Atomic operations used to be very expensive in early GPU 
architectures, especially for double precision additions which had to be 
emulated by loops instead. Recent architectures, however, provide na

tive implementations for double precision additions and much faster 
support for atomic operations in general. Additionally, even with most 
spatially ordered particles, the list-based access to particle data results 
in large amounts of data that have to be read multiple times due to 
the need of reading data blocks of certain sizes (cache lines), while 
an atomic-operation based implementation allows for coalesced read

ing patterns. On the other hand, a list-based approach may show better 
writing patterns if particles are distributed evenly among cells. As shown 
in SI (Fig. S1), the relative performance of these approaches differs sig

nificantly by GPU architecture and slightly by fluid density. In the few 
cases where the performance is comparable, cell-list based implemen

tations carry an additional memory-footprint for the list. Therefore, the 
list approach was abandoned after ``Kepler'' became the prevalent GPU 
architecture.

Certain operations such as binning data for the calculation of op

tional shear prfiles, may result in extraordinary high numbers of con

current atomic operations on a small amount of data, impairing the 
performance. In this case, optimized local summation patterns may sig

nificantly reduce the number of atomic operations [81]. The code may 
activate such optimizations, depending on their expected efficiency for 
certain access patterns and GPU architectures.

3.5.5. Random numbers

For an efficient GPU implementation, we choose the Xorshift algo

rithm [82] as the default random number generator (RNG), which can 
be implemented in a branch- and loop-free manner, while providing 
good randomness. Specifically, a system is initialized with a main ran

dom seed, which can be either passed as a parameter or generated from 
the random source of the operating system. Using the main random seed 
only might lead to the same or at least dependent random values for ev

ery cell or necessitate an atomic- or lock-based mechanism for accessing 
the random seed causing a significant performance penalty. Therefore, 
the cell random seeds are necessary for processing certain parts in par

allel, e.g. generating the random rotation matrix per cell. We note that 
the modular concept of the code also allows users to replace it by a 
user-provided RNG with a matching interface.

3.6. Speed boundaries

The computation speed of operations is limited by certain bound

aries like the maximum amount of data transferred from/to memory 
per second or the maximum number of floating point or atomic opera

tions per second that can be performed by the CPU or GPU. Taking into 

Computer Physics Communications 309 (2025) 109494 

6 



E. Westphal, S. Goh, R.G. Winkler et al. 

Table 1
The amounts of data for each MPC parti

cle. ∗ optional; 1 mandatory for distributed 
systems, recommended otherwise, may trade 
memory footprint for performance; 2 depend

ing on maximum system size; 3 depending on 
maximum particle count.

Particle property Size (bytes) 
Position 12 
Velocity 24 
Cell index1 4-8 
Reorder buffer2 8-24 
ID-tag∗,3 4-8

Total 48-76 

Table 2
The amounts of data for each MPC cell. ∗ op

tional; 1 if using thermostat; 2 if conserving 
angular momentum.

Cell property Size (bytes) 
Center of mass velocity 24 
Combined mass of particles 8 
Particle count 4 
Random seed 8 
Energy/thermostat∗,1 8 
Angular momentum∗,2 24 
Center of mass∗,2 24 
Inertia Tensor∗,2 48

Total 44-148 

account all particle- and cell-related read/write operations, i.e. fluid par

ticle propagation, at least on GPU, is bound by the memory bandwidth. 
The combination of the rotation of particle velocities and the calculation 
of several cell parameters needed for local angular-momentum conser

vation as implemented in our code is the most expensive step, both 
calculation- and memory-transfer-wise. Even though it involves most 
of the algorithm’s atomic operations, it still runs at approximately 60% 
of the theoretical memory bandwidth. Without angular-momentum con

servation and the atomic operations involved, the rotation of particles 
is also memory bound.

3.7. Simulation data

3.7.1. Data types and memory management

The storage and calculation precision for most values and opera

tions can be adjusted in the cofiguration class. The default settings 
are single-precision floating-point numbers for the fluid particle posi

tions and double precision for their velocities [25]. All calculations on 
cell properties are performed and stored in double precision. Precisions 
for suspended particles, e.g., in Molecular Dynamics (MD) plugins can 
be set as necessary. The amounts of data stored for fluid particles and 
collision cells in the default settings are summarized in Tables 1 and 2, 
respectively.

For distributed systems, each subdomain reserves a slightly larger 
fluid particle capacity to leave room for variations in density between 
domains. Additionally, import- and export-buffers are needed for par

ticle exchange, whose size depends mostly on the surface area of the 
domains. As a general rule, the initial buffer size is ⟨𝑁𝑐⟩ multiplied by 
the number of surface cells, about half of which is caused by the random 
shift of up to a collision-cell size 𝑎 for all axes and the remainder to pro

cess particles moving out of their assigned subdomain. The number of 
the latter is reduced by spatially reordering fluid particles at certain in

tervals. Because memory allocation is an expensive operation, especially 
on GPUs, the import and export buffers are reserved slightly above the 
expected size and may be extended by reallocation if needed, but never 

shrunk. Additional memory may be used by other plugins. One example 
is boundary conditions representing no-slip surfaces, which need one 
cell layer to be partially (depending on the random shift) filled with 
phantom particles for fluid-surface coupling. If the top and bottom no

slip boundaries are located in separate domains, both domains will need 
this one-cell-layer-wide buffer, otherwise one buffer will be shared.

3.7.2. Input/output

It is possible to store and read complete system data to/from disk. 
The state variables (fluid particle positions and velocities) and parame

ters (including density, random seed, and simulation step count) of the 
system are written into an easy-to-parse text file, while all particle data 
and select cell data is written in a binary format. Before writing data, 
all particles are ordered by their unshifted cell index. The cell offsets 
are calculated and also saved to enable reading the saved data back into 
systems of different rank counts or domain decompositions. All data 
is written to disk by using collective MPI I/O. The space necessary to 
store a system can be determined by multiplying the number of fluid 
particles with the storage sizes of their positions, velocities and IDs (if 
applicable) from the information in Table 1. Additionally, for each cell 
the random seed, particle count and offset are saved as listed in Table 2. 
As the amount of header information is negligible, for system of default 
precision, the estimated amount of data stored reads

𝐷 =𝑁 × [sizeof(position)+sizeof(velocity)+ sizeof(ID)]

+𝑁cell × [sizeof(random seed)+sizeof(cell offset)

+sizeof(particle count)]

=𝑁 × (12 + 24 + 8) +𝑁cell × (8 + 8 + 4). (8)

For systems with 232 or less particles, the ID tags and cell offsets are 
saved as 32 bit integer values requiring 4 bytes of storage space. It is 
also possible to generate arbitrary particle IDs for debug purposes when 
reading data that were saved in runs without particle IDs.

4. Performance/benchmarks

Benchmarking is performed on the JUWELS Booster System at Jülich 
Supercomputing Center [83]. Each of the nodes provides 2 AMD EPYC 
CPUs (24 cores each) and 4 Nvidia A100 GPUs. The nodes are connected 
via 4 × HDR200 Ifiniband each. Systematic benchmark tests were per

formed utilizing up to 3072 GPUs or 12288 CPU cores for a wide range of 
system sizes from 64×64×64 to 4096×4096×2048 collision cells at low 
and high particle densities, i.e., ⟨𝑁𝑐⟩ = 10, and 50, respectively, with 
and without local angular-momentum conservation. While the CPU- and 
GPU-based measurements for ⟨𝑁𝑐⟩ = 10 (Fig. S2), as well as a bench

mark comparison to the HOOMD-blue MPC code (Fig. S3) are presented 
in SI, we mainly focus here on GPU-based measurements for ⟨𝑁𝑐⟩ = 50.

Strong scaling During each step, the MPC algorithm performs a rela

tively small number of calculations on many particles. Therefore max

imizing data throughput, which can be achieved by localizing data, is 
the key to good performance. Accordingly, the strong scaling presented 
in Fig. 4(a) and (b) shows good efficiency as long as the workload per 
GPU is high. The scaling efficiency of setups with computationally more 
expensive options like local angular-momentum conservation or large 
densities (see also Fig. S1) decreases more slowly, because of their bet

ter GPU utilization. For ⟨𝑁𝑐⟩ = 50 with the AMC option, a speed-up by 
a factor of 10 is achieved roughly at 70% efficiency. With a growing 
number of ranks, communication times become prevalent, as shown in 
Fig. 5(a) and (b). On the other hand, communication times can be kept 
on the order of 10% even for 1024 GPUs for sufficiently large simula

tions, as shown in Fig. 5(c) and (d).

Weak scaling Weak scaling depends on the ratio of the performance of 
nodes for a given load and the additional communication effort neces

Computer Physics Communications 309 (2025) 109494 

7 



E. Westphal, S. Goh, R.G. Winkler et al. 

Fig. 4. (a,b) Strong and (c,d) weak scaling behavior for ⟨𝑁𝑐⟩ = 50. (a,c) The number of MPC steps per second, as well as (b,d) the corresponding efficiency are 
shown. Filled symbols (dashed lines) and open symbols (solid lines) represent scaling behaviors of the code with and without AMC, respectively. Here, we use 
ℎ = 0.05𝑎

√
𝑚∕(𝑘B𝑇 ), 𝛼 = 130◦, and a reorder interval of 200.

Fig. 5. (a), (c) Cumulative runtime distributions for different tasks, values are summed up runtimes for all ranks, and (b), (d) the percentage of the cumulative 
runtime occupied by each component. While the results obtained from a fixed system size of 512× 512 × 512, distributed over different GPU counts as indicated, are 
presented in (a) and (b), the dependence on system sizes, benchmarked on 1024 GPUs, are shown in (c) and (d). In all cases, ⟨𝑁𝑐⟩ = 50, ℎ = 0.05𝑎

√
𝑚∕(𝑘B𝑇 ), and 

𝛼 = 130◦ with a reorder interval of 200, and 400 MPC steps were performed. See Table S1 (SI) for the definitions of labels.

Computer Physics Communications 309 (2025) 109494 

8 



E. Westphal, S. Goh, R.G. Winkler et al. 

Fig. 6. Strong scalability for a small system size of 𝐿∕𝑎= 128 on CPUs. (a) Number of MPC steps per second and (b) corresponding efficiency for two different MPC 
densities, as indicated. Filled symbols (dashed lines) and open symbols (solid lines) represent scaling behaviors of the code with and without AMC, respectively. 
Here, we use ℎ = 0.05𝑎

√
𝑚∕(𝑘B𝑇 ), 𝛼 = 130◦ , and a reorder interval of 200.

sary for adding more notes with the same load. As shown in Fig. 5, 
the ratio of calculation versus communication for MPC on GPUs de

pends heavily on the utilization of the GPUs. This leads to very good 
weak-scaling behavior already for medium sized workloads, presented 
in Fig. 4(c) and (d). Weak scaling efficiency for large workloads is al

most ideal even for very high GPU counts.

Small system size To demonstrate that HTMPC is also efficiently appli

cable to inhouse computer clusters with a limited number of nodes, we 
also perform benchmarks with a small system size of 𝐿∕𝑎 = 128, and 
examine the strong CPU-scalability. As shown in Fig. 6, our code also 
performs efficiently for both low and high densities of ⟨𝑁𝑐⟩ = 10 and ⟨𝑁𝑐⟩ = 50. Good scalability with a speedup by a factor of 10 or 100 is 
easily achievable with a few tens or hundreds of CPUs for this system 
size, cofirming the broad applicability of HTMPC.

5. Showcases

In order to demonstrate the versatility of our code, we present the 
results of a plugin which is capable of simulating passive and active 
colloidal particles in solution. The rigid-body translational dynamics of 
colloidal particles is governed by Newton’s equations of motion. For 
their rotational motion, we employ the quaternion-based formulation, 
which allows the simulation studies of spherical and non-spherical col

loids [51] as well as chiral particles [54] in a unfied framework. Fluid

colloid interactions imply a linear and angular momentum transfer by 
solid-body interactions. We note that this momentum exchange not only 
affects the MPC fluid particles, but also the colloidal particles. Moreover, 
for active particles with surface actuation, the slip velocity 𝒖slip at their 
surface is typically non-zero.

The implementation of colloids requires a plugin that contains multi

ple features described above -- such as angular-momentum conservation 
for proper hydrodynamics, and additional routines for boundary con

ditions corresponding to fluid-colloid collisions and for processing of 
phantom particles, in addition to simulating colloid-colloid interactions. 
The system can be distributed over an arbitrary number of MPI ranks 
and all interactions between colloids and fluid or phantom particles are 
processed locally within each subdomain.

5.1. Colloidal suspensions at thermal equilibrium

The parallel implementation for colloidal particles in a fluid can of 
course not be as efficient as for pure fluids, as the interactions with 
the fluid need to be combined and synchronized for all 𝑁col colloids in 
the system. To examine the scalability quantitatively, we again perform 
benchmark simulations, now including colloidal particles. Here, we con

sider 𝑁col = 106 spherical colloids with effective radius 𝑅eff = 3.25𝑎. 
Purely repulsive steric interaction between colloids is modeled via the 

Fig. 7. (a) Scaling behaviors of the code for suspensions of 106 colloidal particles 
with varying system sizes and MPC density. (b) Cumulative runtimes of tasks. 
The black solid line shows a linear scaling.

separation-shifted Lennard-Jones potential, see SI, Sec. S-IV for details. 
For the MPC fluid, we use the collision time ℎ = 0.02𝑎

√
𝑚∕(𝑘B𝑇 ) and 

the rotation angle 𝛼 = 130◦ for various system sizes and MPC fluid den

sities.

As shown in Fig. 7(a), the simulated system shows good scaling be

havior of run times with the number of GPUs, with two to five times 
speedup, depending on the system size, beyond which saturation in 
the speedup is observed. Examination of cumulative runtimes occu

pied by sub-tasks, shown in Fig. 7(b), indicates that the colloid-data 
communication load, i.e., the communication effort for colloid-data syn

chronization, depends linearly on the number of MPI ranks 𝑁rank , i.e., 
roughly proportional to 𝑁col ×𝑁rank , and therefore becomes dominant 
over the efficiently distributed workload for MPC and the actual col

loid calculations, which indeed exhibit sub-linear scaling. The runtime 

Computer Physics Communications 309 (2025) 109494 

9 



E. Westphal, S. Goh, R.G. Winkler et al. 

for colloid-data communication depends sensitively on the number of 
MPI ranks 𝑁rank [84], where powers-of-two are favorable. A significant 
performance drop for non-power-of-two GPU counts is obtained as il
lustrated in Fig. 7(a).

5.2. Active systems of self-propelling squirmers

As an example of active (non-equilibrium) systems, we implement a 
system of spherical squirmers, which model the self-propulsion of mi

croswimmers via active surface actuation [51,85--88]. Specifically, we 
consider neutral squirmers with the swimming speed 𝑢0 , whose non-zero 
surface slip velocity is

𝒖
𝑏
slip =

3
2
𝑢0 sin𝜃 𝒆𝜃, (9)

where 𝜃 denotes the polar angle in the bod-fixed frame, and 𝒆𝜃 the unit 
vector in the 𝜃 direction. Squirmer steric repulsion is again modeled 
via the Lennard-Jones potential of Eq. (S3) in SI. We also note that the 
amount of additional calculations for the squirmer activity is negligible 
and the corresponding scaling behavior (results not shown) is almost 
identical to that of passive colloidal suspensions presented in Fig. 7.

We first consider a dry system (no hydrodynamic interactions) of 
spherical active Brownian particles (ABPs) as a reference, whose dy

namics is characterized by the emergence of a motility-induced phase 
separation (MIPS) [89,90] for strong self-propulsion, or high Péclet 
number. Here, we use ABPs of radius 𝑅𝑐 = 3.25𝑎 and Péclet number 
Pe = 𝑢0∕(2𝑅𝑐𝐷𝑅) = 128 with the rotational diffusion coefficient 𝐷𝑅 and 
self-propulsion speed 𝑢0, and the linear system size of 𝐿 = 256𝑎 with 
periodic boundary conditions in all three directions, see SI, Sec. S-V for 
further simulation details. The volume packing fraction is varied from 
𝜌col = 0.15 to 0.50, which correspond to 𝑁col = 17,408 to 𝑁col = 57,600. 
The distribution of local particle densities is obtained via Voronoi tes

sellation [91] as described in Sec. S-VI A of SI. As shown in Fig. 8(a), 
the ABP system exhibits MIPS, featuring a metastable liquid-gas coex

istence for high packing fractions 𝜌col ≳ 0.35, in line with the previous 
study [89,92]. The peak densities for the liquid and gas phases are found 
to be 𝜌liquid ≈ 0.6 and 𝜌gas ≈ 0.1, respectively, also in good agreement 
with the previous results [92].

We then turn to squirmer systems with the equivalent Péclet num

ber, colloid densities, system sizes, and boundary conditions, to ex

amine hydrodynamic effects on MIPS. Specifically, we use a cubic 
system of linear size 𝐿 = 256𝑎, and the MPC fluid density (particles 
per collision cell) ⟨𝑁𝑐⟩ = 50, which, together with the collision time 
ℎ = 0.02𝑎

√
𝑚∕(𝑘B𝑇 ) and the rotation angle 𝛼 = 130◦, yields the fluid 

viscosity of 𝜂 = 111.3
√
𝑚𝑘B𝑇 ∕𝑎2 [32,54,68]. For squirmers, we con

sider the radius 𝑅c = 3𝑎 or 𝑅eff = 3.25𝑎 (see Sec. S-IV, SI), and 𝑢0 =
0.01152

√
𝑘B𝑇 ∕𝑚. This parameter set results in the rotational diffusion 

coefficient 𝐷𝑅 = 1.5 × 10−5
√
𝑘B𝑇 ∕𝑚∕𝑎, Reynolds number Re = 0.031, 

and Péclet number Pe = 128 [54].

As shown in Fig. 8(b), density prfiles of hydrodynamic systems 
consisting of neutral squirmers always exhibit a single peak around 
the corresponding global packing fraction for the examined range of 
densities, in sharp contrast to dry ABP systems, indicating that hydro

dynamic interactions suppress the motility-induced phase separation, 
consistent with previous results [76]. We also employ a larger system 
size of 𝐿 = 512𝑎 with 𝑁col = 325,424 and 470,596, corresponding to 
𝜌col ≈ 0.35 and 0.50, respectively, to check for finite-size effects. Resul

tant density prfiles are essentially identical to those of 𝐿 = 256𝑎 in both 
cases of ABPs and squirmers, cofirming that finite-size effects are not 
significant. We also present the velocity and vorticity fields of the MPC 
fluid in Fig. 8(c). We observe the presence of many localized, strong 
vortical structures evenly distributed across the system, with the typi

cal vorticity 𝜔 ≈ 𝑢0∕𝑅𝑐 . Corresponding squirmer cofigurations are also 
provided in Sec. S-VI B of SI. 

Fig. 8. Local density prfiles for (a) ABPs, and (b) squirmers, obtained from 
Voronoi construction, adjusted by the volume of each Voronoi cells, see SI, 
Sec. S-VI A for details. In both cases, Pe = 128. We use global densities of 𝜌col =
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5 for 𝐿 = 256𝑎 (solid lines), and 
𝜌col = 0.35, and 0.5 for 𝐿 = 512𝑎 (dashed lines), respectively, as indicated. (c) 
A cross-section of the fluid velocity field (white arrow lines) and the magnitude 
of vorticity (heat map) are shown for squirmer suspension at 𝜌col = 0.35. Here, 
a slice of the thickness 6𝑎= 2𝑅𝑐 is used and 𝜔max ≈ 1.5 𝑢0

𝑅𝑐

≫𝐷𝑅.

6. Discussion

We have presented a highly parallelized implementation of multipar

ticle collision dynamics for hydrodynamic simulations. The MPC algo

rithm is well suited for parallelization on at least two layers: data access 
is local and there are no long-range interactions. Therefore, the system 
can be domain-decomposed and distributed with little communication 
overhead between subdomains. Additionally, many of the operations 
performed on the particles are independent. Therefore, the work done 
in each subdomain can be further parallelized. However, we note that 
communication is usually much more expensive than calculation, es

pecially for distributed systems utilizing GPUs. Nevertheless, we have 

Computer Physics Communications 309 (2025) 109494 

10 



E. Westphal, S. Goh, R.G. Winkler et al. 

cofirmed overall good scaling behaviors up to more than a trillion MPC 
fluid particles.

Several features of the current code deviate from the previous im

plementations [25,26]. The major differences can be summarized as 
follows: (i) Our new implementation is plugin-based. (ii) The code pro

vides a reproducibility option. (iii) We have abandoned the cell-list 
algorithm. Instead, our new version uses atomic operation directly. (iv) 
Every collision cell is uniquely assigned to one subdomain to avoid the 
necessity of partially processing additional cells in halo areas between 
subdomains and combining the results. (v) Instead of double buffering, 
we consider different variants of a memory-saving algorithm during re

ordering, which significantly reduces the memory footprint.

Lastly, as a showcase, we have considered the emergence of motility

induced phase separation (MIPS) in a system of self-propelled squirmers 
with hydrodynamic interactions. In dry systems of active Brownian par

ticles in three dimensions, MIPS occurs for Pe ≳ 2-30 [89,90,92]. Mean

while, for squirmer suspensions in two dimensions, MPC simulations 
demonstrate that hydrodynamic interactions significantly affect the col

lective behavior of active particles, and completely suppress phase sep

aration [76]. However, direct simulation for three-dimensional systems 
was not achieved so far, most probably due to the computational com

plexity. Therefore, the results presented here clearly show that our 
newly implemented code is indeed very efficient, versatile and useful, fa

cilitating investigations of large system sizes that could not be achieved 
so far.

CRediT authorship contribution statement

Elmar Westphal: Writing -- original draft, Visualization, Validation, 
Software, Methodology, Investigation, Formal analysis, Data curation.

Segun Goh: Writing -- original draft, Visualization, Validation, Inves

tigation, Formal analysis, Data curation. Roland G. Winkler: Writing 
– review & editing, Supervision, Project administration, Methodology, 
Conceptualization. Gerhard Gompper: Writing -- review & editing, Su

pervision, Resources, Project administration, Methodology, Funding ac

quisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to ifluence 
the work reported in this paper.

Acknowledgement

The authors gratefully acknowledge the Gauss Centre for Supercom

puting e.V. (www.gauss-centre.eu) for funding this project by providing 
computing time through the John von Neumann Institute for Comput

ing (NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing 
Centre (JSC).

Appendix A. Supplementary material

Supplementary material related to this article can be found online at 
https://doi.org/10.1016/j.cpc.2024.109494. 

Data availability

Source code and documentation available at https://go.fzj.de/

HTMPC.

References

[1] G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Multi-particle collision dynamics: 
a particle-based mesoscale simulation approach to the hydrodynamics of complex 
fluids, Adv. Polym. Sci. 221 (2009) 1, https://doi.org/10.1007/978-3-540-87706-6_

1.

[2] J.K. Dhont, R.G. Winkler, G. Nägele, D. Richter, G. Gompper, Soft Matter - From 
Synthetic to Biological Materials: Lecture Notes of the 39th Spring School 2008; This 
Spring School was organized by the Institute of Solid State Research in the Research 
Centre Jülich on 3-14 March, 2008, No. PreJuSER-510, Streumethoden, 2008.

[3] M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 
1986.

[4] C.-C. Huang, R.G. Winkler, G. Sutmann, G. Gompper, Semidilute polymer solutions 
at equilibrium and under shear flow, Macromolecules 43 (2010) 10107, https://

doi.org/10.1021/ma101836x.

[5] M. Theers, E. Westphal, G. Gompper, R.G. Winkler, From local to hydrodynamic 
friction in Brownian motion: a multiparticle collision dynamics simulation study, 
Phys. Rev. E 93 (2016) 032604, https://doi.org/10.1103/PhysRevE.93.032604.

[6] J.K.G. Dhont, An Introduction to Dynamics of Colloids, Elsevier, Amsterdam, 1996.

[7] J.T. Padding, A.A. Louis, Hydrodynamic interactions and Brownian forces in col

loidal suspensions: coarse-graining over time and length scales, Phys. Rev. E 74 
(2006) 031402.

[8] R. Chelakkot, R.G. Winkler, G. Gompper, Flow-induced helical coiling of semflexible 
polymers in structured microchannels, Phys. Rev. Lett. 109 (2012) 178101.

[9] K.Y. Wan, Life through the fluid dynamics lens, Nat. Phys. 19 (2023) 1744--1745, 
https://doi.org/10.1038/s41567-023-02299-7.

[10] H. Noguchi, G. Gompper, Shape transitions of fluid vesicles and red blood cells in 
capillary flow, Proc. Natl. Acad. Sci. USA 102 (2005) 14159--14164, https://doi.org/

10.1073/pnas.0504243102.

[11] D.A. Fedosov, B. Caswell, G.E. Karniadakis, A multiscale red blood cell model with 
accurate mechanics, rheology, and dynamics, Biophys. J. 98 (10) (2010) 2215--2225, 
https://doi.org/10.1016/j.bpj.2010.02.002.

[12] E. Lauga, T.R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. 
Phys. 72 (2009) 096601, https://doi.org/10.1088/0034-4885/72/9/096601.

[13] G. Gompper, C. Bechinger, S. Herminghaus, R. Isele-Holder, U.B. Kaupp, H. Löwen, 
H. Stark, R.G. Winkler, Microswimmers–from single particle motion to collective 
behavior, Eur. Phys. J. Spec. Top. 225 (2016) 2061, https://doi.org/10.1140/epjst/

e2016-60095-3.

[14] J. Hu, A. Wysocki, R.G. Winkler, G. Gompper, Physical sensing of surface properties 
by microswimmers -- directing bacterial motion via wall slip, Sci. Rep. 5 (2015) 9586, 
https://doi.org/10.1038/srep09586.

[15] S.M. Mousavi, G. Gompper, R.G. Winkler, Wall entrapment of peritrichous bacteria: 
a mesoscale hydrodynamics simulation study, Soft Matter 16 (2020) 4866, https://

doi.org/10.1039/D0SM00571A.

[16] J. Elgeti, R.G. Winkler, G. Gompper, Physics of microswimmers—single particle mo

tion and collective behavior: a review, Rep. Prog. Phys. 78 (2015) 056601, https://

doi.org/10.1088/0034-4885/78/5/056601.

[17] P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamics phe

nomena with dissipative particle dynamics, Europhys. Lett. 19 (1992) 155, https://

doi.org/10.1209/0295-5075/19/3/001.

[18] P. Español, P.B. Warren, Perspective: dissipative particle dynamics, J. Chem. Phys. 
146 (15) (2017) 150901, https://doi.org/10.1063/1.4979514.

[19] G.R. McNamara, G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas 
automata, Phys. Rev. Lett. 61 (1988) 2332, https://doi.org/10.1103/PhysRevLett.

61.2332.

[20] S. Succi, The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Oxford 
University Press, 2001.

[21] B. Dünweg, A.C. Ladd, Lattice Boltzmann simulations of soft matter systems, Adv. 
Polym. Sci. 221 (2009) 89, https://doi.org/10.1007/978-3-540-87706-6_2.

[22] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford 
University Press, Oxford, 1994.

[23] S.J. Plimpton, S.G. Moore, A. Borner, A.K. Stagg, T.P. Koehler, J.R. Torczynski, M.A. 
Gallis, Direct simulation Monte Carlo on petaflop supercomputers and beyond, Phys. 
Fluids 31 (8) (2019) 086101, https://doi.org/10.1063/1.5108534.

[24] R. Kapral, Multiparticle collision dynamics: simulations of complex systems 
on mesoscale, Adv. Chem. Phys. 140 (2008) 89, https://doi.org/10.1002/

9780470371572.ch2.

[25] E. Westphal, S.P. Singh, C.-C. Huang, G. Gompper, R.G. Winkler, Multiparticle 
collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic sim

ulations, Comput. Phys. Commun. 185 (2014) 495, https://doi.org/10.1016/j.cpc.

2013.10.004.

[26] M.P. Howard, A.Z. Panagiotopoulos, A. Nikoubashman, Efficient mesoscale hydrody

namics: multiparticle collision dynamics with massively parallel GPU acceleration, 
Comput. Phys. Commun. 230 (2018) 10, https://doi.org/10.1016/j.cpc.2018.04.

009.

[27] C.-C. Huang, G. Gompper, R.G. Winkler, Hydrodynamic correlations in multiparticle 
collision dynamics fluids, Phys. Rev. E 86 (2012) 056711, https://doi.org/10.1103/

PhysRevE.86.056711.

[28] A. Malevanets, R. Kapral, Mesoscopic model for solvent dynamics, J. Chem. Phys. 
110 (1999) 8605, https://doi.org/10.1063/1.478857.

[29] T. Ihle, D.M. Kroll, Stochastic rotation dynamics I: formalism, Galilean invariance, 
Green-Kubo relations, Phys. Rev. E 67 (2003) 066705, https://doi.org/10.1103/

PhysRevE.67.066705.

[30] T. Ihle, D.M. Kroll, Stochastic rotation dynamics II: transport coefficients, numerics, 
long time tails, Phys. Rev. E 67 (2003) 066706, https://doi.org/10.1103/PhysRevE.

67.066706.

Computer Physics Communications 309 (2025) 109494 

11 

https://www.gauss-centre.eu
https://doi.org/10.1016/j.cpc.2024.109494
https://go.fzj.de/HTMPC
https://go.fzj.de/HTMPC
https://doi.org/10.1007/978-3-540-87706-6_1
https://doi.org/10.1007/978-3-540-87706-6_1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib18D9BE3629EC667A322BD04EE27331B1s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib18D9BE3629EC667A322BD04EE27331B1s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib18D9BE3629EC667A322BD04EE27331B1s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib18D9BE3629EC667A322BD04EE27331B1s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib75EA0A33EB76F0B0FA3C7B5122FAB7BBs1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib75EA0A33EB76F0B0FA3C7B5122FAB7BBs1
https://doi.org/10.1021/ma101836x
https://doi.org/10.1021/ma101836x
https://doi.org/10.1103/PhysRevE.93.032604
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib91734B0B1FCBBCFCE5ACD1A3087D43EFs1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib2D3DCD63EEF17A70C7471C2DD52FC5B2s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib2D3DCD63EEF17A70C7471C2DD52FC5B2s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib2D3DCD63EEF17A70C7471C2DD52FC5B2s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib866F5834637522311BB6D789E6CC6F55s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib866F5834637522311BB6D789E6CC6F55s1
https://doi.org/10.1038/s41567-023-02299-7
https://doi.org/10.1073/pnas.0504243102
https://doi.org/10.1073/pnas.0504243102
https://doi.org/10.1016/j.bpj.2010.02.002
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1140/epjst/e2016-60095-3
https://doi.org/10.1140/epjst/e2016-60095-3
https://doi.org/10.1038/srep09586
https://doi.org/10.1039/D0SM00571A
https://doi.org/10.1039/D0SM00571A
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1063/1.4979514
https://doi.org/10.1103/PhysRevLett.61.2332
https://doi.org/10.1103/PhysRevLett.61.2332
http://refhub.elsevier.com/S0010-4655(24)00417-X/bibDA3F009A142FA69859001DDA717BCAACs1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bibDA3F009A142FA69859001DDA717BCAACs1
https://doi.org/10.1007/978-3-540-87706-6_2
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib9B9161EF4D0DEF273B8D9AB6D15C5E1As1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib9B9161EF4D0DEF273B8D9AB6D15C5E1As1
https://doi.org/10.1063/1.5108534
https://doi.org/10.1002/9780470371572.ch2
https://doi.org/10.1002/9780470371572.ch2
https://doi.org/10.1016/j.cpc.2013.10.004
https://doi.org/10.1016/j.cpc.2013.10.004
https://doi.org/10.1016/j.cpc.2018.04.009
https://doi.org/10.1016/j.cpc.2018.04.009
https://doi.org/10.1103/PhysRevE.86.056711
https://doi.org/10.1103/PhysRevE.86.056711
https://doi.org/10.1063/1.478857
https://doi.org/10.1103/PhysRevE.67.066705
https://doi.org/10.1103/PhysRevE.67.066705
https://doi.org/10.1103/PhysRevE.67.066706
https://doi.org/10.1103/PhysRevE.67.066706


E. Westphal, S. Goh, R.G. Winkler et al. 

[31] N. Kikuchi, C.M. Pooley, J.F. Ryder, J.M. Yeomans, Transport coefficients of a 
mesoscopic fluid dynamics model, J. Chem. Phys. 119 (2003) 6388--6395, https://

doi.org/10.1063/1.1603721.

[32] H. Noguchi, G. Gompper, Transport coefficients of off-lattice mesoscale

hydrodynamics simulation techniques, Phys. Rev. E 78 (2008) 016706, https://

doi.org/10.1103/PhysRevE.78.016706.

[33] R.G. Winkler, C.-C. Huang, Stress tensors of multiparticle collision dynamics fluids, 
J. Chem. Phys. 130 (2009) 074907, https://doi.org/10.1063/1.3077860.

[34] J.T. Padding, A.A. Louis, Hydrodynamic and Brownian fluctuations in sediment

ing suspensions, Phys. Rev. Lett. 93 (2004) 220601, https://doi.org/10.1103/

PhysRevLett.93.220601.

[35] M. Hecht, J. Harting, M. Bier, J. Reinshagen, H.J. Herrmann, Shear viscosity of 
claylike colloids in computer simulations and experiments, Phys. Rev. E 74 (2006) 
021403, https://doi.org/10.1103/PhysRevE.74.021403.

[36] S. Frank, R.G. Winkler, Polyelectrolyte electrophoresis: field effects and hydro

dynamic interactions, Europhys. Lett. 83 (2008) 38004, https://doi.org/10.1209/

0295-5075/83/38004.

[37] S. Mandal, M.G. Mazza, Multiparticle collision dynamics for tensorial nematodynam

ics, Phys. Rev. E 99 (2019) 063319, https://doi.org/10.1103/PhysRevE.99.063319.

[38] A. Malevanets, R. Kapral, Solute molecular dynamics in a mesoscopic solvent, J. 
Chem. Phys. 112 (2000) 7260, https://doi.org/10.1063/1.481289.

[39] K. Mussawisade, M. Ripoll, R.G. Winkler, G. Gompper, Dynamics of polymers in 
a particle based mesoscopic solvent, J. Chem. Phys. 123 (2005) 144905, https://

doi.org/10.1063/1.2041527.

[40] I. Ali, D. Marenduzzo, J.M. Yeomans, Polymer packaging and ejection in viral cap

sids: shape matters, Phys. Rev. Lett. 96 (2006) 208102, https://doi.org/10.1103/

PhysRevLett.96.208102.

[41] A. Nikoubashman, C.N. Likos, Flow-induced polymer translocation through narrow 
and patterned channels, J. Chem. Phys. 133 (2010) 074901, https://doi.org/10.

1063/1.3466918.

[42] C.C. Huang, G. Gompper, R.G. Winkler, Effect of hydrodynamic correlations on the 
dynamics of polymers in dilute solution, J. Chem. Phys. 138 (2013) 144902, https://

doi.org/10.1063/1.4799877.

[43] Q.-S. Chen, A. Patelli, H. Chaté, Y.-Q. Ma, X.-Q. Shi, Fore-aft asymmetric flocking, 
Phys. Rev. E 96 (2017) 020601, https://doi.org/10.1103/PhysRevE.96.020601.

[44] A. Nikoubashman, M.P. Howard, Equilibrium dynamics and shear rheology of semi

flexible polymers in solution, Macromolecules 50 (20) (2017) 8279--8289, https://

doi.org/10.1021/acs.macromol.7b01876.

[45] M. Liebetreu, C.N. Likos, Hydrodynamic iflation of ring polymers under shear, Com

mun. Mater. 1 (2020) 4, https://doi.org/10.1038/s43246-019-0006-5.

[46] D.S. Devarajan, S. Rekhi, A. Nikoubashman, Y.C. Kim, M.P. Howard, J. Mittal, 
Effect of charge distribution on the dynamics of polyampholytic disordered pro

teins, Macromolecules 55 (20) (2022) 8987--8997, https://doi.org/10.1021/acs.

macromol.2c01390.

[47] Z. Wang, Z.-G. Wang, A.-C. Shi, Y. Lu, L. An, Behaviors of a polymer chain in chan

nels: from zimm to rouse dynamics, Macromolecules 56 (6) (2023) 2447--2453, 
https://doi.org/10.1021/acs.macromol.3c00013.

[48] P. Ilg, Simulating the flow of interacting ferrofluids with multiparticle collision dy

namics, Phys. Rev. E 106 (2022) 064605, https://doi.org/10.1103/PhysRevE.106.

064605.

[49] R. Wang, C. Feng, Z. Zhang, C. Shao, J. Du, What quantity of charge on the nanopar

ticle can result in a hybrid morphology of the nanofluid and a higher thermal con

ductivity?, Powder Technol. 422 (2023) 118443, https://doi.org/10.1016/j.powtec.

2023.118443.

[50] S. Thakur, R. Kapral, Collective dynamics of self-propelled sphere-dimer motors, 
Phys. Rev. E 85 (2012) 026121, https://doi.org/10.1103/PhysRevE.85.026121.

[51] M. Theers, E. Westphal, G. Gompper, R.G. Winkler, Modeling a spheroidal mi

croswimmer and cooperative swimming in a narrow slit, Soft Matter 12 (2016) 7372, 
https://doi.org/10.1039/C6SM01424K.

[52] A.W. Zantop, H. Stark, Emergent collective dynamics of pusher and puller squirmer 
rods: swarming, clustering, and turbulence, Soft Matter 18 (2022) 6179, https://

doi.org/10.1039/D2SM00449F.

[53] K. Qi, E. Westphal, G. Gompper, R.G. Winkler, Emergence of active turbulence in 
microswimmer suspensions due to active hydrodynamic stress and volume exclusion, 
Commun. Phys. 5 (2022) 49, https://doi.org/10.1038/s42005-022-00820-7.

[54] S. Goh, R.G. Winkler, G. Gompper, Hydrodynamic pursuit by cognitive self-steering 
microswimmers, Commun. Phys. 6 (2023) 310, https://doi.org/10.1038/s42005-

023-01432-5.

[55] J. Macías-Durán, V. Duarte-Alaniz, H. Híjar, Active nematic liquid crystals simulated 
by particle-based mesoscopic methods, Soft Matter 19 (2023) 8052--8069, https://

doi.org/10.1039/D3SM00481C.

[56] N. Jain, S. Thakur, Collapse dynamics of chemically active flexible polymer, 
Macromolecules 55 (7) (2022) 2375--2382, https://doi.org/10.1021/acs.macromol.

1c02502.

[57] J. Clopés Llahí, A. Martín-Gómez, G. Gompper, R.G. Winkler, Simulating wet ac

tive polymers by multiparticle collision dynamics, Phys. Rev. E 105 (2022) 015310, 
https://doi.org/10.1103/PhysRevE.105.015310.

[58] J. Hu, M. Yang, G. Gompper, R.G. Winkler, Modelling the mechanics and hydrody

namics of swimming E. coli, Soft Matter 11 (2015) 7867, https://doi.org/10.1039/

C5SM01678A.

[59] T. Eisenstecken, J. Hu, R.G. Winkler, Bacterial swarmer cells in cofinement: a 
mesoscale hydrodynamic simulation study, Soft Matter 12 (2016) 8316, https://

doi.org/10.1039/C6SM01532H.

[60] L. Ning, X. Lou, Q. Ma, Y. Yang, N. Luo, K. Chen, F. Meng, X. Zhou, M. Yang, Y. Peng, 
Hydrodynamics-induced long-range attraction between plates in bacterial suspen

sions, Phys. Rev. Lett. 131 (2023) 158301, https://doi.org/10.1103/PhysRevLett.

131.158301.

[61] J. Elgeti, U.B. Kaupp, G. Gompper, Hydrodynamics of sperm cells near surfaces, 
Biophys. J. 99 (2010) 1018, https://doi.org/10.1016/j.bpj.2010.05.015.

[62] T. Chinnasamy, J.L. Kingsley, F. Inci, P.J. Turek, M.P. Rosen, B. Behr, E. Tüzel, U. 
Demirci, Guidance and self-sorting of active swimmers: 3d periodic arrays increase 
persistence length of human sperm selecting for the fittest, Adv. Sci. 5 (2) (2018) 
1700531, https://doi.org/10.1002/advs.201700531.

[63] S. Rode, J. Elgeti, G. Gompper, Sperm motility in modulated microchannels, New J. 
Phys. 21 (2019) 013016, https://doi.org/10.1088/1367-2630/aaf544.

[64] N. Heddergott, T. Krüger, S.B. Babu, A. Wei, E. Stellamanns, S. Uppaluri, T. Pfohl, H. 
Stark, M. Engstler, Trypanosome motion represents an adaptation to the crowded en

vironment of the vertebrate bloodstream, PLoS Pathog. 8 (11) (2012) 1--17, https://

doi.org/10.1371/journal.ppat.1003023.

[65] C. Lansche, A.K. Dasanna, K. Quadt, B. Fröhlich, D. Missirlis, M. Tétard, B. 
Gamain, B. Buchholz, C.P. Sanchez, M. Tanaka, U.S. Schwarz, M. Lanzer, The 
sickle cell trait affects contact dynamics and endothelial cell activation in Plas

modium falciparum-infected erythrocytes, Commun. Biol. 1 (2018) 211, https://

doi.org/10.1038/s42003-018-0223-3.

[66] T. Ihle, D.M. Kroll, Stochastic rotation dynamics: a Galilean-invariant mesoscopic 
model for fluid flow, Phys. Rev. E 63 (2001) 020201(R), https://doi.org/10.1103/

PhysRevE.63.020201.

[67] I.O. Götze, H. Noguchi, G. Gompper, Relevance of angular momentum conservation 
in mesoscale hydrodynamics simulations, Phys. Rev. E 76 (2007) 046705, https://

doi.org/10.1103/PhysRevE.76.046705.

[68] M. Theers, R.G. Winkler, Bulk viscosity of multiparticle collision dynamics fluids, 
Phys. Rev. E 91 (2015) 033309, https://doi.org/10.1103/PhysRevE.91.033309.

[69] M. Yang, M. Theers, J. Hu, G. Gompper, R.G. Winkler, M. Ripoll, Effect of angular 
momentum conservation on hydrodynamic simulations of colloids, Phys. Rev. E 92 
(2015) 013301, https://doi.org/10.1103/PhysRevE.92.013301.

[70] H. Noguchi, N. Kikuchi, G. Gompper, Particle-based mesoscale hydrodynamic tech

niques, Europhys. Lett. 78 (2007) 10005.

[71] C.-C. Huang, A. Chatterji, G. Sutmann, G. Gompper, R.G. Winkler, Cell-level canon

ical sampling by velocity scaling for multiparticle collision dynamics simulations, J. 
Comput. Phys. 229 (2010) 168, https://doi.org/10.1016/j.jcp.2009.09.024.

[72] A. Lamura, G. Gompper, T. Ihle, D.M. Kroll, Multiparticle collision dynamics: flow 
around a circular and a square cylinder, Europhys. Lett. 56 (2001) 319--325, https://

doi.org/10.1209/epl/i2001-00522-9.

[73] L. Cannavacciuolo, R.G. Winkler, G. Gompper, Mesoscale simulation of polymer dy

namics in microchannel flows, Europhys. Lett. 83 (2008) 34007, https://doi.org/10.

1209/0295-5075/83/34007.

[74] C.-C. Huang, A. Varghese, G. Gompper, R.G. Winkler, Thermostat for nonequilib

rium multiparticle-collision-dynamics simulations, Phys. Rev. E 91 (2015) 013310, 
https://doi.org/10.1103/PhysRevE.91.013310.

[75] M. Ripoll, K. Mussawisade, R.G. Winkler, G. Gompper, Dynamic regimes of fluids 
simulated by multi-particle-collision dynamics, Phys. Rev. E 72 (2005) 016701.

[76] M. Theers, E. Westphal, K. Qi, R.G. Winkler, G. Gompper, Clustering of microswim

mers: interplay of shape and hydrodynamics, Soft Matter 14 (2018) 8590, https://

doi.org/10.1039/C8SM01390J.

[77] D. Goldberg, What every computer scientist should know about floating-point arith

metic, ACM Comput. Surv. 23 (1) (1991) 5--48, https://doi.org/10.1145/103162.

103163.

[78] O. Villa, D. Chavarria-Miranda, V. Gurumoorthi, A. Márquez, S. Krishnamoorthy, 
Effects of floating-point non-associativity on numerical computations on massively 
multithreaded systems, in: Proceedings of Cray User Group Meeting (CUG), vol. 3, 
2009.

[79] S. Le Grand, A.W. Götz, R.C. Walker, Spfp: speed without compromise—a mixed 
precision model for gpu accelerated molecular dynamics simulations, Comput. Phys. 
Commun. 184 (2) (2013) 374--380, https://doi.org/10.1016/j.cpc.2012.09.022.

[80] W. Dietz, P. Li, J. Regehr, V. Adve, Understanding integer oveflow in C/C + + , ACM 
Trans. Softw. Eng. Methodol. 25 (1) (dec 2015), https://doi.org/10.1145/2743019.

[81] E. Westphal, Voting and shuffling to optimize atomic operations, Technical Blog 
(GPU Pro Tip), NVIDIA Developer, 2015, https://developer.nvidia.com/blog/voting-

and-shuffling-optimize-atomic-operations.

[82] G. Marsaglia, Random number generators, J. Mod. Appl. Stat. Methods 2 (2003) 2, 
https://doi.org/10.22237/jmasm/1051747320.

[83] Jülich Supercomputing Centre, JUWELS cluster and booster: exascale pathfinder 
with modular supercomputing architecture at Juelich Supercomputing Centre, J. 
Large-Scale Res. Facil. 7 (2021) A138, https://doi.org/10.17815/jlsrf-7-183.

[84] R. Rabenseifner, J.L. Träff, More efficient reduction algorithms for non-power-of

two number of processors in message-passing parallel systems, in: D. Kranzlmüller, P. 
Kacsuk, J. Dongarra (Eds.), Recent Advances in Parallel Virtual Machine and Message 
Passing Interface, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 36--46.

[85] M.J. Lighthill, On the squirming motion of nearly spherical deformable bodies 
through liquids at very small Reynolds numbers, Commun. Pure Appl. Math. 5 
(1952) 109, https://doi.org/10.1002/cpa.3160050201.

Computer Physics Communications 309 (2025) 109494 

12 

https://doi.org/10.1063/1.1603721
https://doi.org/10.1063/1.1603721
https://doi.org/10.1103/PhysRevE.78.016706
https://doi.org/10.1103/PhysRevE.78.016706
https://doi.org/10.1063/1.3077860
https://doi.org/10.1103/PhysRevLett.93.220601
https://doi.org/10.1103/PhysRevLett.93.220601
https://doi.org/10.1103/PhysRevE.74.021403
https://doi.org/10.1209/0295-5075/83/38004
https://doi.org/10.1209/0295-5075/83/38004
https://doi.org/10.1103/PhysRevE.99.063319
https://doi.org/10.1063/1.481289
https://doi.org/10.1063/1.2041527
https://doi.org/10.1063/1.2041527
https://doi.org/10.1103/PhysRevLett.96.208102
https://doi.org/10.1103/PhysRevLett.96.208102
https://doi.org/10.1063/1.3466918
https://doi.org/10.1063/1.3466918
https://doi.org/10.1063/1.4799877
https://doi.org/10.1063/1.4799877
https://doi.org/10.1103/PhysRevE.96.020601
https://doi.org/10.1021/acs.macromol.7b01876
https://doi.org/10.1021/acs.macromol.7b01876
https://doi.org/10.1038/s43246-019-0006-5
https://doi.org/10.1021/acs.macromol.2c01390
https://doi.org/10.1021/acs.macromol.2c01390
https://doi.org/10.1021/acs.macromol.3c00013
https://doi.org/10.1103/PhysRevE.106.064605
https://doi.org/10.1103/PhysRevE.106.064605
https://doi.org/10.1016/j.powtec.2023.118443
https://doi.org/10.1016/j.powtec.2023.118443
https://doi.org/10.1103/PhysRevE.85.026121
https://doi.org/10.1039/C6SM01424K
https://doi.org/10.1039/D2SM00449F
https://doi.org/10.1039/D2SM00449F
https://doi.org/10.1038/s42005-022-00820-7
https://doi.org/10.1038/s42005-023-01432-5
https://doi.org/10.1038/s42005-023-01432-5
https://doi.org/10.1039/D3SM00481C
https://doi.org/10.1039/D3SM00481C
https://doi.org/10.1021/acs.macromol.1c02502
https://doi.org/10.1021/acs.macromol.1c02502
https://doi.org/10.1103/PhysRevE.105.015310
https://doi.org/10.1039/C5SM01678A
https://doi.org/10.1039/C5SM01678A
https://doi.org/10.1039/C6SM01532H
https://doi.org/10.1039/C6SM01532H
https://doi.org/10.1103/PhysRevLett.131.158301
https://doi.org/10.1103/PhysRevLett.131.158301
https://doi.org/10.1016/j.bpj.2010.05.015
https://doi.org/10.1002/advs.201700531
https://doi.org/10.1088/1367-2630/aaf544
https://doi.org/10.1371/journal.ppat.1003023
https://doi.org/10.1371/journal.ppat.1003023
https://doi.org/10.1038/s42003-018-0223-3
https://doi.org/10.1038/s42003-018-0223-3
https://doi.org/10.1103/PhysRevE.63.020201
https://doi.org/10.1103/PhysRevE.63.020201
https://doi.org/10.1103/PhysRevE.76.046705
https://doi.org/10.1103/PhysRevE.76.046705
https://doi.org/10.1103/PhysRevE.91.033309
https://doi.org/10.1103/PhysRevE.92.013301
http://refhub.elsevier.com/S0010-4655(24)00417-X/bibCEE3F60D176F985A21D73DDC2F88FADFs1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bibCEE3F60D176F985A21D73DDC2F88FADFs1
https://doi.org/10.1016/j.jcp.2009.09.024
https://doi.org/10.1209/epl/i2001-00522-9
https://doi.org/10.1209/epl/i2001-00522-9
https://doi.org/10.1209/0295-5075/83/34007
https://doi.org/10.1209/0295-5075/83/34007
https://doi.org/10.1103/PhysRevE.91.013310
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib5F0B38B0CD00B09A012A36549F81F897s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib5F0B38B0CD00B09A012A36549F81F897s1
https://doi.org/10.1039/C8SM01390J
https://doi.org/10.1039/C8SM01390J
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib40B9B76BED0A48F030E452B7AFC2420Bs1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib40B9B76BED0A48F030E452B7AFC2420Bs1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib40B9B76BED0A48F030E452B7AFC2420Bs1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bib40B9B76BED0A48F030E452B7AFC2420Bs1
https://doi.org/10.1016/j.cpc.2012.09.022
https://doi.org/10.1145/2743019
https://developer.nvidia.com/blog/voting-and-shuffling-optimize-atomic-operations
https://developer.nvidia.com/blog/voting-and-shuffling-optimize-atomic-operations
https://doi.org/10.22237/jmasm/1051747320
https://doi.org/10.17815/jlsrf-7-183
http://refhub.elsevier.com/S0010-4655(24)00417-X/bibA312DCF71992B790EB48531374CEE850s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bibA312DCF71992B790EB48531374CEE850s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bibA312DCF71992B790EB48531374CEE850s1
http://refhub.elsevier.com/S0010-4655(24)00417-X/bibA312DCF71992B790EB48531374CEE850s1
https://doi.org/10.1002/cpa.3160050201


E. Westphal, S. Goh, R.G. Winkler et al. 

[86] J.R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46 
(1971) 199, https://doi.org/10.1017/S002211207100048X.

[87] I.O. Götze, G. Gompper, Mesoscale simulations of hydrodynamic squirmer inter

actions, Phys. Rev. E 82 (2010) 041921, https://doi.org/10.1103/PhysRevE.82.

041921.

[88] O.S. Pak, E. Lauga, Generalized squirming motion of a sphere, J. Eng. Math. 88 (1) 
(2014) 1, https://doi.org/10.1007/s10665-014-9690-9.

[89] A. Wysocki, R.G. Winkler, G. Gompper, Cooperative motion of active Brownian 
spheres in three-dimensional dense suspensions, Europhys. Lett. 105 (2014) 48004, 
https://doi.org/10.1209/0295-5075/105/48004.

[90] J. Stenhammar, D. Marenduzzo, R.J. Allen, M.E. Cates, Phase behaviour of active 
Brownian particles: the role of dimensionality, Soft Matter 10 (2014) 1489, https://

doi.org/10.1039/C3SM52813H.

[91] C.H. Rycroft, VORO + + : a three-dimensional Voronoi cell library in C + + , Chaos 19 
(2009) 041111, https://doi.org/10.1063/1.3215722.

[92] A.K. Omar, K. Klymko, T. GrandPre, P.L. Geissler, Phase diagram of active Brow

nian spheres: crystallization and the metastability of motility-induced phase sepa

ration, Phys. Rev. Lett. 126 (2021) 188002, https://doi.org/10.1103/PhysRevLett.

126.188002.

Computer Physics Communications 309 (2025) 109494 

13 

https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1103/PhysRevE.82.041921
https://doi.org/10.1103/PhysRevE.82.041921
https://doi.org/10.1007/s10665-014-9690-9
https://doi.org/10.1209/0295-5075/105/48004
https://doi.org/10.1039/C3SM52813H
https://doi.org/10.1039/C3SM52813H
https://doi.org/10.1063/1.3215722
https://doi.org/10.1103/PhysRevLett.126.188002
https://doi.org/10.1103/PhysRevLett.126.188002

	HTMPC: A heavily templated C++ library for large scale particle-based mesoscale hydrodynamics simulations using multipartic...
	1 Introduction
	2 Multiparticle collision dynamics
	3 Implementation
	3.1 Code structure
	3.2 Distributed simulation
	3.2.1 Domain decomposition
	3.2.2 Temporary exchange of particles for processing
	3.2.3 Permanent exchange of particles during reordering

	3.3 Reproducibility
	3.4 Additional code features
	3.5 Hybrid CPU/GPU implementation
	3.5.1 Identical code base for different architectures
	3.5.2 GPU memory management
	3.5.3 GPU acceleration
	3.5.4 Atomic operations
	3.5.5 Random numbers

	3.6 Speed boundaries
	3.7 Simulation data
	3.7.1 Data types and memory management
	3.7.2 Input/output


	4 Performance/benchmarks
	5 Showcases
	5.1 Colloidal suspensions at thermal equilibrium
	5.2 Active systems of self-propelling squirmers

	6 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Supplementary material
	Data availability
	References


