001040606 001__ 1040606
001040606 005__ 20250512115735.0
001040606 0247_ $$2doi$$a10.1016/j.firesaf.2025.104344
001040606 0247_ $$2ISSN$$a0379-7112
001040606 0247_ $$2ISSN$$a0378-7761
001040606 0247_ $$2ISSN$$a1873-7226
001040606 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01955
001040606 0247_ $$2WOS$$aWOS:001422956300001
001040606 037__ $$aFZJ-2025-01955
001040606 082__ $$a690
001040606 1001_ $$0P:(DE-Juel1)190637$$aQuaresma, Tássia L. S.$$b0
001040606 245__ $$aThe influence of small mass loss rate peaks on the rate of spread of predictive flame spread simulations: A theoretical study
001040606 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2025
001040606 3367_ $$2DRIVER$$aarticle
001040606 3367_ $$2DataCite$$aOutput Types/Journal article
001040606 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1746429338_23827
001040606 3367_ $$2BibTeX$$aARTICLE
001040606 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040606 3367_ $$00$$2EndNote$$aJournal Article
001040606 520__ $$aPeaks in the mass loss rate (MLR) curve derived from thermogravimetric analysis (TGA) are commonly used to infer the pyrolysis rates of solid fuels. While the main peaks are often modelled, smaller MLR fluctuations are typically neglected, leading to discrepancies between models and experiments. The impact of these small fluctuations on key simulation predictions, however, remains unclear. This study systematically explores a specific scenario in which a small MLR fluctuation significantly affects the predicted rate of spread (ROS) of a simplified flame spread simulation. The MaCFP-recommended pyrolysis model for poly(methyl methacrylate) (PMMA) is adapted to incorporate a small MLR peak accounting for 0.5 % to 2 % of the sample’s total mass. Results from sensitivity analyses show that the peak position has the greatest impact on the ROS, followed by the peak mass fraction, while the peak width has negligible effect. Adding a small peak at lower temperatures increased the ROS by up to 6 % to 13 %, depending on the peak’s mass fraction, whereas peaks at higher temperatures had little to no effect. These results indicate that fluctuations at lower temperatures, w.r.t. the main peak, could significantly enhance the predicted spread rates and should be considered in flame spread simulations.
001040606 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001040606 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040606 7001_ $$0P:(DE-Juel1)207791$$aHehnen, Tristan$$b1$$ufzj
001040606 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b2$$eCorresponding author
001040606 773__ $$0PERI:(DE-600)1483569-1$$a10.1016/j.firesaf.2025.104344$$gVol. 152, p. 104344 -$$p104344 -$$tFire safety journal$$v152$$x0379-7112$$y2025
001040606 8564_ $$uhttps://juser.fz-juelich.de/record/1040606/files/1-s2.0-S0379711225000086-main-2-1.pdf$$yOpenAccess
001040606 8767_ $$d2025-03-13$$eHybrid-OA$$jDEAL
001040606 909CO $$ooai:juser.fz-juelich.de:1040606$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001040606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190637$$aForschungszentrum Jülich$$b0$$kFZJ
001040606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207791$$aForschungszentrum Jülich$$b1$$kFZJ
001040606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b2$$kFZJ
001040606 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001040606 9141_ $$y2025
001040606 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001040606 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001040606 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001040606 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040606 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFIRE SAFETY J : 2022$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040606 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001040606 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001040606 920__ $$lyes
001040606 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001040606 980__ $$ajournal
001040606 980__ $$aVDB
001040606 980__ $$aUNRESTRICTED
001040606 980__ $$aI:(DE-Juel1)IAS-7-20180321
001040606 980__ $$aAPC
001040606 9801_ $$aAPC
001040606 9801_ $$aFullTexts