001     1040606
005     20250512115735.0
024 7 _ |a 10.1016/j.firesaf.2025.104344
|2 doi
024 7 _ |a 0379-7112
|2 ISSN
024 7 _ |a 0378-7761
|2 ISSN
024 7 _ |a 1873-7226
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01955
|2 datacite_doi
024 7 _ |a WOS:001422956300001
|2 WOS
037 _ _ |a FZJ-2025-01955
082 _ _ |a 690
100 1 _ |a Quaresma, Tássia L. S.
|0 P:(DE-Juel1)190637
|b 0
245 _ _ |a The influence of small mass loss rate peaks on the rate of spread of predictive flame spread simulations: A theoretical study
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746429338_23827
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Peaks in the mass loss rate (MLR) curve derived from thermogravimetric analysis (TGA) are commonly used to infer the pyrolysis rates of solid fuels. While the main peaks are often modelled, smaller MLR fluctuations are typically neglected, leading to discrepancies between models and experiments. The impact of these small fluctuations on key simulation predictions, however, remains unclear. This study systematically explores a specific scenario in which a small MLR fluctuation significantly affects the predicted rate of spread (ROS) of a simplified flame spread simulation. The MaCFP-recommended pyrolysis model for poly(methyl methacrylate) (PMMA) is adapted to incorporate a small MLR peak accounting for 0.5 % to 2 % of the sample’s total mass. Results from sensitivity analyses show that the peak position has the greatest impact on the ROS, followed by the peak mass fraction, while the peak width has negligible effect. Adding a small peak at lower temperatures increased the ROS by up to 6 % to 13 %, depending on the peak’s mass fraction, whereas peaks at higher temperatures had little to no effect. These results indicate that fluctuations at lower temperatures, w.r.t. the main peak, could significantly enhance the predicted spread rates and should be considered in flame spread simulations.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hehnen, Tristan
|0 P:(DE-Juel1)207791
|b 1
|u fzj
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 2
|e Corresponding author
773 _ _ |a 10.1016/j.firesaf.2025.104344
|g Vol. 152, p. 104344 -
|0 PERI:(DE-600)1483569-1
|p 104344 -
|t Fire safety journal
|v 152
|y 2025
|x 0379-7112
856 4 _ |u https://juser.fz-juelich.de/record/1040606/files/1-s2.0-S0379711225000086-main-2-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1040606
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)207791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132044
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Elsevier 09/01/2023
|0 PC:(DE-HGF)0125
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FIRE SAFETY J : 2022
|d 2024-12-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21