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Dataset link: https://doi.org/10.5281/zenodo.1 Peaks in the mass loss rate (MLR) curve derived from thermogravimetric analysis (TGA) are commonly used

2804448 to infer the pyrolysis rates of solid fuels. While the main peaks are often modelled, smaller MLR fluctuations
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(PMMA) is adapted to incorporate a small MLR peak accounting for 0.5% to 2% of the sample’s total mass.
Results from sensitivity analyses show that the peak position has the greatest impact on the ROS, followed by
the peak mass fraction, while the peak width has negligible effect. Adding a small peak at lower temperatures
increased the ROS by up to 6% to 13%, depending on the peak’s mass fraction, whereas peaks at higher
temperatures had little to no effect. These results indicate that fluctuations at lower temperatures, w.r.t. the
main peak, could significantly enhance the predicted spread rates and should be considered in flame spread
simulations.

1. Introduction neglecting small fluctuations in the data. This happens for at least two

reasons: (i) the number of modelled reactions is limited for practical

1.1. Motivation

A key aspect in developing predictive flame spread simulations is
modelling the pyrolysis of solid fuels. This requires accounting for
the heat transfer within the solid material as well as the pyrolysis
reactions and their respective rates. Determining the rates of pyrolysis
is particularly important for materials whose pyrolysates contain a high
yield of combustible gases. In such cases, the pyrolysis rates dictate the
speed at which combustible gases are produced and supplied to the gas
phase for combustion, consequently influencing the heat release rates
(HRRs) from the fire [1]. The HRR affects the heat flux that heats the
solid material, creating a feedback loop that sustains the flame spread
process.

Common engineering approaches to determining pyrolysis rates in-
volve analysing mass loss rates (MLRs) derived from thermogravimetric
analysis (TGA) measurements. Peaks in the MLR curve are interpreted
as representing pyrolysis reactions, with the associated reaction rates
typically modelled using the Arrhenius equation. However, pyrolysis
models rarely capture the full complexity of MLR measurements, often

purposes, despite experimental data often suggesting the presence of
additional reactions; and (ii) experimental data can be inconsistent,
showing variability in individual measurements or discrepancies across
different apparatuses [2].

It is often assumed that neglecting the uncaptured MLR fluctuations
in pyrolysis models has little to no effect on flame spread simulation
predictions. This paper aims to challenge that assumption by demon-
strating a specific scenario where these neglected fluctuations have
a significant influence on flame spread predictions. While this study
focuses on a single example, it raises the possibility that many other
scenarios could be similarly affected — a hypothesis that justifies further
investigation in future, more comprehensive studies.

The scenario considers horizontal flame spread over a PMMA sam-
ple, using an established pyrolysis model that accounts for two decom-
position reactions. An additional reaction representing a small MLR
peak is introduced to the model, and its impact on the predicted
rate of spread (ROS) is evaluated. The analysis follows a two-step
approach: (i) identifying positions where the original model deviates
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from experimental MLR data and adding the new reaction accordingly,
and (ii) systematically assessing the effect of the additional reaction
across the entire pyrolysis range.

The influence of the small MLR peak on ROS is explored using
two methodologies. First, a one-at-a-time sensitivity analysis isolates
the effects of the peak’s position, mass fraction, and width. Second, a
global sensitivity analysis employing Sobol indices [3] and polynomial
chaos expansion (PCE) [4] quantifies the relative importance of these
parameters across the full parameter space, offering a more robust
understanding of their influence.

1.2. PMMA pyrolysis

Different reaction schemes have been proposed for modelling
PMMA pyrolysis based on the MLR curve profile. These differences
involve not only the number of identified MLR peaks but also the
serial or parallel nature of the defined pyrolysis reactions. In some
studies, PMMA pyrolysis is very simplified, being described by a single
reaction representing the main MLR peak [5,6]. Other approaches built
on cast PMMA data account for two reactions, which can be either in
series [7] or in parallel [8,9]. In these models, the first reaction rep-
resents a smaller MLR peak observed at lower temperatures, while the
second represents the main peak at higher temperatures. Furthermore,
comparison against the utilised TGA data shows that in these cases
only the most significant MLR peaks were modelled, while small peaks
were neglected. Exceptions to this trend are, for example, the works
of Ferriol et al. [10] and Hehnen and Arnold [11], where a general
framework of multiple parallel reactions was proposed as a strategy to
achieve thorough representation of the total MLR data.

The MLR data itself can exhibit significant variability due to several
factors. For PMMA, these include the polymerisation method used (e.g.
free radical initiation, anionic initiation [12,13]), the manufacturing
process (e.g. extruded, cast [7]), the molecular weight [10], sam-
ples provided by different vendors, experimental conditions, material
colour, sample preparation [14], device calibration, and might even
vary depending on the utilised TGA apparatus [2]. Moreover, the appli-
cation of smoothing techniques to reduce noise in MLR data can result
in loss of information and potentially lead to inaccurate representation
of the real MLR behaviour [15].

For each peak identified in the MLR curve representing a pyrolysis
reaction, kinetic parameters — the pre-exponential factor (4) and the
activation energy (E) — need to be estimated. Various methods can be
used for this estimation, including analytical methods (e.g., conven-
tional, direct differential) and curve-fitting optimisation methods [16,
17]. This study is in the context of the latter approach, which combines
pyrolysis models with optimisation algorithms in an inverse modelling
technique to determine A and E [5,7,11,18]. Defining the optimisation
strategy involves selecting an appropriate optimisation algorithm [19],
target data, as well as a cost function [20].

In this study, particular attention is paid to the pyrolysis scheme
proposed by Fiola et al. [7], as it is the current recommendation of
the MaCFP working group for modelling PMMA pyrolysis [21]. Within
MaCFP, this model is referred to as the UMD Pyrolysis Model, but
for brevity, it will hereafter be called the UMD Model. The UMD
Model was constructed based on TGA data for black cast PMMA [21],
which exhibits small MLR peaks at lower temperatures followed by a
large main peak. The scheme accounts for two first-order reactions:
one representing a minor peak at approximately 190°C and another
corresponding to the main peak at around 374 °C. The model assumes
that the first peak arises from the release of solvent trapped within
the polymer matrix. However, the small peak is also designed to
represent the melted polymer (PMMA_,.;.), which reacts to form an
intermediate solid (PMMA;,,;). This intermediate solid then undergoes
further reactions, releasing most of the combustible gases (PMMAg).

Previous TGA studies on PMMA thermal degradation under ni-
trogen atmosphere and varying heating rates have attributed small,

Fire Safety Journal 152 (2025) 104344

low-temperature peaks to the volatilisation of impurities, such as resid-
ual monomer or additives [13,22]. However, other research attributes
these peaks to the onset of depolymerisation, triggered by the breaking
of weak linkages at the polymer chain ends — a behaviour particularly
common in radically polymerised PMMA [10,23-25]. The scheme pro-
posed by Fiola et al. [7] aligns more closely with the latter explanation,
even though it appears to have been originally built on the former.
It is important to note, however, that in practical applications, espe-
cially in fire modelling, pyrolysis models are primarily developed to
estimate the rates at which combustible gases are released into the
gas phase for combustion, rather than to replicate the precise chemical
mechanisms occurring during pyrolysis. Therefore, due to the employed
simplifications, the utilised pyrolysis scheme is considered an effective
model.

The UMD Model formulation, with two serial reactions, leads to
an apparent overall good agreement with the total MLR from TGA
experiments [7]. However, a closer inspection of the MLR vs. temper-
ature plot reveals small deviations from the experimental data across
the entire pyrolysis range. These deviations are particularly noticeable
at the shoulders of the main peaks, where fluctuations in the exper-
imental MLR data are not captured by the original model. Typically,
such fluctuations are assumed to have negligible impact on model
predictions of interest, such as the rate of spread (ROS), and are
therefore often disregarded. However, the extent to which overlooking
these fluctuations influences the variability in flame spread simulations,
particularly in predicting the ROS, remains unclear.

Only few previous studies have focused on understanding the im-
pact of kinetic parameters and material properties on predictive models
that particularly involve flame spread [26,27]. Specifically, hardly any
studies have addressed the effect of using different kinetic schemes for
modelling PMMA pyrolysis, let alone the impact of accounting for small
MLR peaks. Bal and Rein [28] investigated the effect of using different
kinetic schemes on ignition times, considering single- and multiple-
step reactions. Their study suggested that a single-step mechanism
would be sufficient to represent the material behaviour, due to the
secondary importance of kinetics in comparison to the heat transfer in
the solid. Fiola et al. [7] performed in their study a simplified sensitivity
analysis to compare pyrolysis properties of extruded and cast PMMA for
modelling gasification experiments. Among other differences, the two
sets of properties differed by the number of peaks identified in TGA/
microscale combustion calorimeter (MCC) experiments. Their study
concluded that pyrolysis properties of extruded and cast PMMA can
be used interchangeably. However, the study by Fiola et al. is focused
on micro-scale, i.e. Simultaneous Thermal Analysis (STA) as well as
MCC [29], and bench-scale, i.e. the Controlled Atmosphere Pyrolysis
Apparatus II (CAPA II) [30], setups where no flame spread takes place.
It could be demonstrated that individual parameters exhibit different
sensitivities from micro- and bench scale to setups where self-sustained
flame spread occurs [31]. Thus, further research is needed to assess
how uncertainties in pyrolysis models directly affect the predictions of
flame spread models.

2. Methods
2.1. Numerical modelling of flame spread

The simulation setup was designed to enable a steady-state, self-
sustained flame spread on a horizontal PMMA plate of bench-scale di-
mensions. The Fire Dynamics Simulator (FDS) [32], version FDS6.7.9-0-
gec52dee-HEAD, was selected as the modelling framework. An
overview of the most refined case is presented in Fig. 1 for illustration
purposes. The numerical model was developed to serve as a simplified
sandbox case to apply state-of-the-art approaches for predicting flame
spread within FDS. Key aspects of the solid-phase definition, including
sample dimensions, material properties, and pyrolysis kinetics, were
tailored to replicate the characteristics of black cast PMMA, consistent
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Fig. 1. Simulation setup of a self-sustained flame spread over a horizontal PMMA sample. The most refined case is shown, consisting of 1.5 mm gas phase cells. (a) Top view
showing dimensions, gas phase grid, and zones of spread; (b) perspective view showing a self-sustained spreading flame.

with the material used in the MaCFP studies.

The sample thickness is set to 6 mm. Width and length of the sample
were assigned to have approximately 100 mm and 200 mm, respectively.
The values of width and length were slightly adjusted to conform with
the tested gas phase cell sizes. An external heat flux of 65kWm™2 is
applied to one of the sample ends for 100 s to start ignition. The dark
grey patch in Figs. 1(a) and 1(b) extends for 30 mm in the x-direction,
indicating the region where the sample is ignited.

Zones of spread were defined as depicted in Fig. 1(a), such that the
influences of the ignition and the end of the sample were excluded
from the self-sustained spread phase. Fig. 1(a) shows a row of green
dots along the sample’s central line, indicating devices that capture the
HRR per unit volume (HRRPUV) from the gas phase cells just above the
sample. Using the methodology proposed by Quaresma et al. [31], the
cell with the maximum HRRPUV is used as criterion to represent the
flame leading edge. The position of the leading edge is then monitored
throughout the simulation. From this information, the ROS is calculated
as the first derivative of the function describing the relation between
flame position and simulation time. The calculated ROS refers only to
the region with self-sustained spread, thereby excluding the effects of
ignition and extinction zones.

The back side of the sample is insulated with a board of Marinite
20 mm thick, whose width and length correspond to those of the sample.
No wind or forced ventilation conditions were considered. Further
details on the modelling of the solid and gas phases, as well as details
on grid analyses and other simulation settings are provided in the
following subsections.

2.1.1. Solid phase

The rates at which the solid material looses mass due to pyrol-
ysis were defined to vary exponentially with the local temperatures
of the solid, as established by the Arrhenius equation [32,33]. In
general, four input parameters are required to define a rate of re-
action: the pre-exponential factor A, the activation energy E, the
mass fraction of the solid, and the order of reaction. Alternatively,
in FDS, a pyrolysis reaction can be defined in terms of the param-
eters PYROLYSIS_RANGE (47), REFERENCE_TEMPERATURE (T,),
and HEATING_RATE (7) instead of A and E. The parameter AT refers
to the width of the peak, assuming its shape to be approximately
triangular, whereas 7, is simply the peak temperature. From 47 and
T, FDS calculates A and E using the following relations:

(€Y
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where r, is the peak reaction rate, T is the heating rate used in the
TGA experiment, Y,(0) is the initial mass fraction of the solid, and
, is the yield of the solid residue [32]. In the scope of this work,
the pyrolysis reactions will be described and discussed in terms of
AT and T, as performed in previous inverse modelling studies by
Hehnen and Arnold [11], and Lauer et al. [9]. This approach allows
for a direct representation of the MLR peaks within the pyrolysis
temperature ranges of interest, making sampling more efficient and
representative of the behaviour of real materials. That is because
directly sampling E and A can produce unrealistic reaction rates.
This risk arises because the sampling space for A is extremely large,
and the exponential sensitivity of the model to E can amplify small
variations, creating unreasonably high reaction rates. By contrast, T,
and AT provide a more intuitive and direct link to the MLR curve
when visualised, ensuring that the sampled values align well with the
expected physical behaviour.

In this contribution, the reaction scheme describing PMMA pyrolysis
was built on the formulation proposed by Fiola et al. [7] for cast
black PMMA. This formulation was particularly chosen because it
provides the set of kinetic parameters and material properties which
are recommended by the MaCFP working group for modelling PMMA
pyrolysis [21]. The recommendation is based on validation exercises
conducted in 2023 that defined the best performing parameter set as
the one which closest predicted MLR measurements produced with the
NIST Gasification Apparatus. In addition, the parameter set has been
employed before to simulate real-scale flame spread experiments, as
the Single Burning Item (SBI) setup [26], the Parallel Panels Test during
the 2023 MaCFP workshop (MaCFP-3), and is part of the FDS validation
suite [34].

Fig. 2 presents the UMD Model alongside the experimental nor-
malised residual mass (Fig. 2(a)) and the MLR curve (Fig. 2(b)). The
experimental curves were obtained by averaging TGA data reported
by several different institutes to the MaCFP database (namely NIST,
TIFP, UMD, and UQ), ensuring that the data more accurately re-
flects the real material behaviour and accounts for potential variability
in experimental conditions. The experiments were conducted using a
heating rate of 10K/min and nitrogen atmosphere, resulting in MLR
profiles where small peaks at low temperatures and a large peak at

v
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Fig. 2. Comparison of the original model (UMD Model [7], reference model for PMMA pyrolysis) with TGA data from the MaCFP Database [21]. The experimental data represents
the average of multiple datasets provided by NIST, TIFP, UMD, and UQ. (a) Normalised residual mass; (b) Mass loss rate.

high temperatures can be observed. The kinetics of PMMA pyrolysis
in this model are represented by two serial first-order reactions, cap-
turing two main peaks observed in Fig. 2(b). The first reaction (here
named R1) was introduced to represent a small MLR peak observed
at approximately 190°C in Fig. 2(b). It was described considering that
the melted polymer (PMMA,,;) produces 2% of a combustible gas
(PMMA,;,), and 98 % of an intermediate component (PMMA;,,,). It was
then assumed that the production of PMMA,, triggers a secondary
pyrolysis reaction (R2), which in turn produces 0.2 % of char and 99.8 %
of the same combustible gas as in reaction R1, PMMA,,;. The kinetic
parameters A and E were determined by inverse modelling, using data
of TGA experiments as target. Data of DSC measurements were used to
determine the heats of reaction of R1 and R2, as well as the material
specific heat capacity, as described elsewhere [7,35]. The reactions R1
and R2 are shown in, and their respective kinetic parameters and heats
of reaction are presented in Table 2.

The pyrolysis scheme in the UMD Model, defined by reactions R1
and R2, captures the main MLR peaks observed in the variability of the
experimental data, as shown in Fig. 2. However, they are insufficient
to account for smaller additional MLR peaks or fluctuations observable
throughout the temperature range where PMMA pyrolyses. As a con-
sequence, the total MLR obtained with the two-reaction UMD Model
deviates from the MLR derived from TGA experiments. Some of these
deviations can be observed, for example, in the 210°C to 310°C range,
and above 400 °C, as indicated by the red arrows in Fig. 3. Additionally,
a significant deviation from the experimental data is observed at the
main peak associated with reaction R2. The model displays a higher
MLR peak than the average experimental data, with a slight shift
towards higher temperatures. Assuming that all pyrolysis reactions of
PMMA are of first-order, such deviations in the total MLR can only be
reduced if more pyrolysis reactions are included in the model.

On this basis, a third parallel reaction (R3) is introduced to repre-
sent a small peak that is not accounted for by the UMD Model. R3 is
defined to yield 0.2 % of char and 99.8 % of PMMA,,,, similar to reaction
R2, as shown in . As an example, the peak temperature of reaction
R3 was set to T, = 210°C, and its pyrolysis range, i.e. peak width,
was set to AT = 80°C. However, considering the regions indicated
by the red arrows in Fig. 3, there are several possible combinations
of peak temperature, pyrolysis range, and mass fractions that can
characterise a small peak to improve agreement with the experimental
data. Understanding how this variability in the R3 peak affects the ROS
is the main objective of this study, and will be addressed in detail later
in the text.

Heat transfer inside the solid was considered to occur only in
the direction perpendicular to the sample surface. Hence, the de-
fault 1-D conduction model available in FDS was selected. Spatial

discretisation of the PMMA layer was set to uniform, whereas the
default stretched node spacing for the layer of the insulation material
was adopted. The parameter controlling the solid phase discretisation
CELL_SIZE_FACTOR was set to 1.0, as it was found that values lower
than unity (0.1, 0.5), which lead to increased resolution, had negligible
effects on the ROS, while significantly increasing the computational
cost. This setting produced 18 nodes spaced by 0.35 mm in the PMMA
layer, and 10 stretched nodes in the layer of the insulation material. It
is important to note that as the thickness of the sample is reduced due
to thermal decomposition, the nodes are automatically rearranged by
FDS during the simulation.

Thermophysical and optical parameters describing the PMMA sam-
ple in the UMD Model follow the specifications proposed by
Fiola et al. [7]. Both PMMA, . and the residue PMMA4, were
described by the same set of properties. For consistency, here PMMA;,,
is also described using these properties. The set of material properties
includes sample emissivity, absorption coefficient, density, thermal
conductivity and specific heat capacity. The thermal conductivity and
the specific heat capacity are given as temperature-dependent param-
eters, determined by piecewise linear functions. The values for sample
emissivity, absorption coefficient, and density are 0.96, 2870 m~!, and
1210kg m™3, respectively. For associated uncertainties and details on
the estimation procedure to obtain these parameters, the reader should
refer to the original work of Fiola et al. [7].

The material definition used for the insulation board was taken from
the Parallel Panel simulation setup by NIST, which is publicly available
in the FDS validation repository [36]. The properties correspond to
those of Marinite, a common insulating material in fire experiments.
The density and emissivity of Marinite were set to 737kgm~ and
0.90, respectively. The thermal conductivity and specific heat capacity
were assumed to be constant at 0.12Wm~'K~! and 1.20kJkg™! K~!,
respectively.

2.1.2. Gas phase

The combustible gas PMMA,,; produced by the defined pyrolysis
reactions was described with the properties of the monomer methyl
methacrylate (MMA). The combustion of MMA was assumed to be
mixing-controlled, and the Large Eddy Simulation (LES) mode was
selected. In FDS, the LES simulation mode refers not only to the tur-
bulence modelling, but also to a set of other sub-models describing, for
example, flame extinction and wall models. All default settings within
this simulation mode were applied, including the Deardorff model for
sub-grid scale eddy viscosity, and the wall-adapting local eddy-viscosity
(WALE) model for near-wall turbulence. The default radiation model
based on the grey gas assumption was used, which assumes an optically
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Fig. 3. Zoomed-in view of the mass loss rate curve, emphasising the deviations between the original UMD Model and the experimental average data (indicated by the red arrows).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Scheme of reactions representing PMMA pyrolysis.

Label Pyrolysis reactions Source

R1 PMMApq: —> 0.98 PMMA;, + 0.02 PMMAg,, UMD Model, by Fiola et al. [7]
R2 PMMA;,; —> 0.002 PMMAp,r + 0.998 PMMAgs

R3 PMMA;p,, —> 0.002 PMMAgh,, + 0.998 PMMA, This work

Table 2

Kinetic parameters and heats of reaction of PMMA pyrolysis reactions, R1 and R2 from Fiola et al. [7].

Label A E Peak temperature Pyrolysis range Heat of reaction
/57! /1 mol™! (T,)/°C (aT)/°C /kI kg™

R1 4.95e+16 1.64e+05 189.95 59.0 5.0

R2 1.35e+11 1.64e+05 374.3 115.3 817.0

R3 2.06e+12 1.32e+05 210.0 80.0 5.0

thick flame. A specified radiative fraction determines the portion of the
total heat released as thermal radiation.

Thermophysical properties of MMA and the yields of its combustion
products follows the description used in the Parallel Panel validation
cases by NIST [34]. The specific heat capacity of MMA was fixed
at 1.10kJkg™' K~!, and its thermal conductivity and diffusivity were
calculated by FDS from the prescribed Lennard-Jones parameters ¢ =
4701 A, and e/k = 205.78 K. The yields of soot and CO were assigned
respectively to 0.022 and 0.01. Based on the chemical formula of MMA
(CsHgO,), and the specified yields of soot and CO, the heat of combus-
tion is given as 24265.3kJkg™!. The radiative fraction of the MMA gas
is set to 0.31.

A grid sensitivity study was carried out with different gas phase
cell sizes: 3.0, 2.5, 2.0, and 1.5mm. It was observed that a stable self-
sustained spread did not occur for cell sizes larger than 2.0 mm, as the
flame extinguished soon after the end of ignition. In the 2.5 mm case,
although propagation towards the end of the sample was observed, the
flame assumed an asymmetrical and unstable shape along the way. For
each of the 1.5, 2.0, and 2.5 mm cases, the impact on the ROS due to the
number of radiation angles (NRA) was evaluated. Three values of NRA
(104, 1208, 3016) were tested, and it was found that the effect of the
NRA was insignificant across all gas phase resolutions. In light of this,
this study will focus on the 1.5 and 2.0 mm cases only, each considering
default settings of NRA (= 104).

The size of the computational domain was determined such to
encompass the entire height of the flame in the positive z-direction,
and to reduce possible effects of domain boundaries. An overview of the
simulation setup is presented in Fig. 1, where the 1.5 mm case is shown
for illustration. In the 1.5mm case, the sample is 82.5mm wide and
198 mm long; and the domain extends for 264 mmx 148.5 mmx 180 mm in

the x-, y- and z-directions. In the 2.0 mm case, the sample is 102 mm wide
and 192 mm long; and the domain extends for 256 mmx 170 mmx 150 mm
in the x-, y- and z-directions.

The simulation domains were subdivided into multiple meshes to
enable parallel computation. The most refined case, with 1.5 mm cells,
was divided into 162 meshes, while the 2.0mm cells were divided
into 80 meshes. A high-performance computing cluster, consisting of
268 worker nodes with a total of 17 152cores, was used to run the
simulations. Each worker node features two AMD EPYC 7452 32-Core
processors, each operating at a base clock speed of 2.350 GHz, and is
equipped with 256 GB of memory, corresponding to 4 GB per core.

2.2. Analysis of small MLR peaks

In this study, the pyrolysis scheme from the original UMD Model
is modified by introducing a small MLR peak to improve the fit of the
model to experimental MLR data. This peak corresponds to a pyrolysis
reaction consuming 0.5% to 2% of the initial mass of the sample,
represented as reaction R3 in . The mass fraction decomposed by R3,
named PMMA;,,,, represents a portion of the virgin PMMA sample that
may contribute to small MLR fluctuations. While PMMA;,, does not
represent a specific chemical component, it serves as a placeholder for
minor impurities or alternative degradation pathways not captured by
the reactions in the original model (R1 and R2).

The small peak will be described and analysed through the following
three parameters:

+ the peak temperature (7)) of the small R3 peak;
« the pyrolysis range (AT') of the small R3 peak (i.e. peak width);
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+ the initial mass fraction (my) of PMMA,,,, associated with the
small R3 peak.

Since all pyrolysis reactions of PMMA are assumed first-order, the
order of reaction is fixed at n = 1 and its influence is not included in
the analysis. Furthermore, as the focus lies on the kinetic parameters,
the importance of the heat of reaction of R3 is also not evaluated in
this study, and its value is fixed at 5.0kJ - kg™' as presented in Table 2.

In Fig. 3, red arrows highlight three key regions of the MLR curve
where the introduction of a small peak could enhance the model’s
alignment with the experimental data. For instance, a small peak with
a pyrolysis range of AT = 80°C, decomposing 1% of the initial mass
of the material, can be placed at 210°C, 284 °C or 420°C, as shown
in Fig. 4(a). The total resulting MLRs, presented in Fig. 4(b), which
combine the UMD Model with the R3 peak at each location, show
better agreement with the experimental data than the original UMD
Model alone. This improvement in fit is reflected in Fig. 5, where
the reduced root mean square error (RMSE) quantifies the enhanced
match between each modified model and the experimental TGA data.
However, multiple combinations of peak temperature, peak width, and
mass fraction could define a small peak like R3 that enhances the fit
of the model within these regions, allowing for further exploration of
optimal parameters.

In this sense, another aspect of this study is to systematically exam-
ine the relationship between the simulation model and the introduced
small peak, extending beyond the three main regions highlighted by
the red arrows in Fig. 3. By varying the position of the small peak
across the full temperature range associated with PMMA pyrolysis,
the model’s sensitivity to this peak is evaluated in a broader context.
This is motivated by generalised approaches [10,11], where adding
a third peak (R3) could improve the overall fit of the total MLR to
the experimental data, not only in regions where distinct peaks are
observed but also in areas where it might overlap with existing peaks
in the model.

The primary aim of this study is to explore how variations in the
parameters defining the small peak are reflected in the ROS predicted
by the flame spread simulation. Specifically, we seek to determine
whether certain regions of the MLR curve should be preferentially
covered by the model, given that they may generate more significant
changes in the ROS. Additionally, this study seeks to understand how
the flame spread simulation responds to variability in the small peak’s
characteristics in a systematic manner, providing insights into the most
relevant configurations for improving the pyrolysis model fidelity.

Two different methods were used to evaluate the effect of small MLR
peaks on the ROS. In the first method, the parameters T,, AT and m,
were varied one-at-a-time to assess their individual impacts on the ROS,
with results discussed relative to different simulation references. While
this approach can highlight individual parameter effects, it does not
fully capture how each parameter contributes to the overall variability
of the ROS across its entire range of values. This is because it only
measures responses to isolated changes rather than the cumulative
impact of each parameter as it varies throughout the entire parameter
space. This means that it may overlook how sensitive the ROS is
to the full scope of possible variations in each parameter, providing
only a partial assessment of their relative importance. To address this
limitation, the second method combines an uncertainty analysis with
a global sensitivity analysis, both performed using a polynomial chaos
expansion (PCE) approach. These methods offer a more comprehensive
view and are described in detail in the following sections.

2.2.1. One-at-a-time analysis

In this approach, the goal is to investigate the individual impacts
of the parameters defining the small R3 peak (7,, AT, m) on the
ROS. Four groups of simulations were created, considering two mass
fractions of PMMA,,, m; = 0.01 and m; = 0.02; and two gas phase
resolutions of 1.5and 2.0 mm cells. The groups were labelled with two
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characters for easier reference: the first character denotes the PMMA;,,
mass fraction, and the second character denotes the cell size. A mass
fraction of 0.01 is represented by “1”, and 0.02 is represented by “2”.
Similarly, a cell size of 1.5 mm is represented by “a”, and 2.0 mm is rep-
resented by “b”. For example, “Group 2a” is composed by simulations
where the mass fraction of PMMA,,, is fixed at 0.02, and the gas phase
cell size is 1.5 mm. Additionally, two simulation cases corresponding to
the same cell sizes, where only the original UMD Model is used, were
named Cases Oa and Ob. Table 3 presents a summary of the simulation
groups and cases considered in the analysis.

For each group of simulations detailed in Table 3, the peak temper-
ature T, was varied one-at-a-time, while maintaining AT at constant
80°C. Then, T, was held fixed at 210°C and AT was varied indepen-
dently, but only in the coarser simulation cases, i.e. Groups 1b and 2b.
This limitation aimed to save computing time, considering the expected
lower impact of AT in comparison to T,. The variation intervals for
these parameters were established based on their initial values: T, =
210°C and AT = 80°C for the R3 peak, as well as on the observed
variability in the total MLR from TGA data (see Fig. 3 and Table 2).

Starting from an initial peak temperature of 7, = 210°C, the
variation interval for T, was defined to range from 80 % to 200% of
210°C, resulting in a range of 168 to 420°C. From the lower limit of
this interval, temperature points for 7, were sampled at increments
of 10.5°C (5% of 210°C). This strategy produced 25 samples, each
of which was used in a different flame spread simulation, with all
other simulation settings kept fixed and unchanged within a group. The
25 different positions of peak R3 associated with the 7, samples are
illustrated in Fig. 6. Overall, 100 simulations were conducted to study
the effect of T, across the four simulation groups.

Similarly, the variation interval for AT was defined to range from
80 % to 200% of 80°C, resulting in a range of 64°C to 160 °C. From
this interval, 25 samples were generated at increments of 4 °C, which
corresponds to 5 % of 80 °C. The R3 peaks resulting from the AT samples
are presented in Fig. 7, where the effect on the width of R3 can be
clearly observed. As AT is varied within Groups 1b and 2b only, a total
of 50 flame spread simulations were performed to analyse the effect of
this parameter considering the current approach.

The effects of the parameters T, and AT on the ROS of the flame
spread simulations were assessed as percentage variations relative, to
a reference ROS, as described by the following expression:

(ROSparam - ROSref)

ROS ¢

Here, ROS,,m denotes the ROS calculated from simulations with
varied T, and AT, while ROS,¢ represents the ROS associated with the
reference simulation case. The expression provided by Eq. (4) enables
the evaluation of negative and positive changes in the ROS, depending
on the position and the amplitude of the small R3 peak.

In the analysis, simulation Cases Oa and Ob were chosen as refer-
ences to determine ROS,.;. This provides a suitable starting point, as
these cases employ the original UMD Model without the R3 peak. To
ensure consistency, only simulations with the same gas-phase cell size
were compared against each other. Specifically, Case 0a was used as
the reference for simulation Groups 1a and 2a, while Case 0b served as
the reference for Groups 1b and 2b. This baseline comparison allows
to quantify the overall influence of incorporating the R3 peak into the
UMD Model, assessing how the inclusion of a small R3 peak affects the
ROS relative to the original model.

Variation = x 100 (C))

2.2.2. Uncertainty quantification and global sensitivity analysis

The primary objective of this approach is two-fold. Firstly, it aims
to quantify the uncertainty propagated to the ROS predicted by the
2 mm (gas phase resolution) simulation case due to the inclusion of the
small peak in the pyrolysis model. Following the same line of reasoning
as in the one-at-a-time analysis, the small peak is defined in terms of
the parameters 7, AT and m,. In this part, the expected ROS value
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data. Figure (b) displays the combined mass loss rate from the UMD Model and the R3 peak at each of these locations, illustrating the improved alignment with the experimental

data [21] compared to the original UMD Model [7].

Table 3
Reference simulation cases and groups of simulations considered in the one-at-a-time approach.
Label Material composition Cell size Pyrolysis reactions Varying
(PMMA sample) (gas phase) one-at-a-time
Group 1la 99% PMMA g, + 1% PMMA;p,, 1.5 mm (R1+R2+R3) T,
Group 1b 99% PMMA,,; + 1% PMMA,;,, 2.0 mm (R1+R2+R3) T,, AT
Group 2a 98% PMMA g, + 2% PMMA;p, 1.5 mm (R1+R2+R3) T,
Group 2b 98% PMMA oy, + 2% PMMA;p,, 2.0 mm (R1+R2+R3) T, AT
Case Oa 100 % PMMA o 1.5 mm UMD Model (R1+R2) -
Case 0b 100 % PMMA ;¢ 2.0 mm UMD Model (R1+R2) -

as well as its associated uncertainty are estimated. Secondly, it focuses
on determining the contribution of each parameter defining the small
peak to this uncertainty. To this end, a global sensitivity analysis is
conducted, in which the influence of each parameter is quantitatively
determined [37].

The uncertainty in the parameters defining the small peak was
determined based on the variation intervals used in the one-at-a-time
analysis. These intervals, referred to as uncertainty intervals, are sum-
marised in Table 4. The methodology for determining the uncertainty
in the peak temperature (7)) and the pyrolysis range (4T) follows the
same approach as in the previous analysis. However, the uncertainty
in the mass fraction decomposed by the small peak is extended at its
lower limit to account for even smaller peaks, which are considered to
decompose between 0.5 % and 2 % of the total mass of the material. All
input variables were assumed to be uniformly distributed within their
respective intervals. The main goal is to understand how a given small

Table 4

Intervals of uncertainty of the parameters associated with the small R3 peak.
Parameter Intervals of uncertainty Units
Peak temperature (7,) [168; 420] °C
Pyrolysis range (4T) [64; 160] °C
Mass fraction (m,) [0.005; 0.02] -

peak, characterised by any combination of T,, AT, and m,, within these
intervals of uncertainty, affects the predicted ROS.

In this analysis, a non-intrusive polynomial chaos expansion (PCE)
method was adopted. PCEs are polynomial approximation techniques
specifically designed for facilitating uncertainty quantification and sen-
sitivity analysis. By treating the model as a “black box”, the PCE
approach approximates the model using only its input—output data. It
treats the uncertain model inputs as random variables and represents
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my = 0.01 and my = 0.02, at three main temperatures: 210°C, 284°C, and 420°C. The
inclusion of the R3 peak at these temperatures in the UMD Model [7] generally reduces
the RMSE, indicating improved agreement with experimental data [21].

the model as orthogonal polynomials of these inputs. This provides a
cost-effective framework compared to techniques based on Monte Carlo
estimates, which require a very large and often prohibitive number of
simulation runs to determine statistical properties accurately [31,38].
The analysis described in this section was carried out using the Python
library chaospy [4].

The flame spread simulation is represented by a function f that
provides the output of interest Y; f varies in space x and time ¢,
and depends on a vector of input parameters Q = (Q;,Q,,...,Q,), as
expressed in the following equation:

Y = f(x,1,0) (5)

Here, the model output of interest is the ROS, and the uncertain
parameters are those describing the small peak, as defined earlier: T,
AT, and my,. A general polynomial approximation for f can be defined
as:

[t = ) ¢xn®,0), Iy={0... N} 6
nely

where n ranges over Iy and N represents the highest order of the
polynomials used in the expansion. The term c,(x,) denotes the co-
efficients of the expansion, and @,(Q) represents the polynomials in
the expansion. The PCE is constructed so that the polynomials are
orthogonal to the joint probability density function of the uncertain
inputs. The three-term recurrence relation is used to compute the
PCE [4].

The coefficients of the expansion ¢,(x, ), also known as the Fourier
coefficients, can be estimated using various methodologies, including
intrusive  and  non-intrusive  approaches [4]. Recently,
Jamil and Brannstrom [39] compared the performance of both intrusive
and non-intrusive methods for quantifying uncertainties in pyrolysis
models based on PCE. They concluded that the non-intrusive projection
method led to faster convergence than the point collocation method,
particularly when dealing with a limited number of uncertain inputs.
Given these findings and the complexity of the flame spread simulation
model, which makes intrusive methods impractical, the projection
method was chosen for this work.

The projection method approximates the coefficients of the polyno-
mial expansion using a numerical integration scheme. Here, Gaussian
quadrature was employed, which requires the function to be evaluated
at specific points, known as quadrature points, that correspond to sam-
ples of the input parameters. The number of samples is determined by
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the order of the polynomial expansion N and the number of uncertain
input parameters d, as defined by: (N + 1)?. The PCE order is chosen
to match the order used in the quadrature rule.

In this study, two PCEs were developed for orders 2 and 3. The
quality of these approximations was evaluated based on a global
RMSE, using input-output data from the one-at-a-time analysis of
Groups 1b and 2b. The best PCE approximation is determined based
on the lowest value of global RMSE. For each order, the number of
samples (and consequently the number of simulation runs) was 27
for the second-order PCE and 64 for the third-order PCE, given that
the number of uncertain parameters describing the small peak is 3.
The uncertainty in the ROS induced by these uncertain parameters is
expressed in terms of the standard deviation.

The influence of each parameter is expressed quantitatively through
the Sobol sensitivity indices [3]. The method is based on the decompo-
sition of variances, where the total variance of the output of the model
is split into partial variances attributed to individual input parameters,
as well as their interactions. The indices are obtained by dividing each
partial variance by the total variance of the output, providing ratios
from O to 1. For example, given an input vector Q = (A, B,C), the
indices become:

S1p +S1p + S1c+S2pp + S2p¢ + S2pc + S3ppc =1 7)

where S1,, Slg, and Sl are the first-order indices, accounting for the
main effects of A, B, and C respectively. The second-order indices S2,p,
S2,¢ and S2p account for the interaction effects between the pairs of
inputs in their subscripts. Accordingly, S3,pc is the third-order index
which accounts for the interaction effects on the output when A, B and
C are varied together.

The indices provide a measure of the contribution of each input
parameter to the overall output variance. Specifically, the first-order
indices (S1) represent the independent effect of each parameter, indi-
cating the portion of output variance that can be attributed directly to
variations in that parameter across its entire range of values. Unlike the
one-at-a-time analysis, which examines individual effects by varying
one parameter at a time, the S1 indices offer a more comprehensive as-
sessment by capturing each parameter’s influence on output variability
across the entire parameter space.

The higher-order indices (S2, S3, etc.) capture the combined in-
fluence of the parameters in their subscripts on the output variance.
The total-order sensitivity indices (ST) account for both main and
interaction effects, representing the overall contribution of a parameter
to the output variance [40]. For example, the ST index of parameter A
is given by ST, = S1 4+ S2p +S25¢ + S3acp [31,40]. When interaction
effects exist in the model, the sum of all ST indices (e.g., STy +STz+ST¢)
is greater than 1.

3. Results and discussion
3.1. One-at-a-time analysis

3.1.1. Qualitative effects on the HRR and flame position curves

The qualitative effects of one-at-a-time variations in the peak tem-
perature T, pyrolysis range A7 and mass fraction m, are initially
discussed for simulations in Group 2b. This group is particularly se-
lected because it showed the largest responses to changes in all input
variables defining the R3 peak. This effect is attributed to the larger
amount of material decomposed by the small peak in Group 2b, where
it accounts for 2% of the total material mass, compared to 1% in
Groups 1a and 1b. The effects related to the mass fraction decomposed
by the small peak will be further discussed in the next section.

The peak temperature 7, had a significantly larger influence on
the HRR and flame position curves than the pyrolysis range AT. This
difference is illustrated by the discrepancy in the HRR curves, as
shown in Figs. 8 and 9 for simulations in Group 2b. The plots show
greater variability in the HRR when T’ » was varied (Figs. 8(a) and 9(a))
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compared to when AT was varied (Figs. 8(b) and 9(b)). In Figs. 8 and 9,
the curves are colour-coded to represent respectively the specific values
of T, and AT used in each simulation, following the colour pattern
presented previously in Figs. 6 and 7. Additionally, it is important to
bear in mind that when T), is varied one-at-a-time, AT is fixed at 80°C
and when AT is varied, T, is fixed at 210°C.

Fig. 8(a) clearly demonstrates the reversal effect of increasing 7,
on the HRR: as T, is moved from lower to higher values, the HRR
decreases, particularly during the self-sustained spread phase. When
the peak temperature T), is set to higher values (see Fig. 6), the material
associated with the R3 peak begins to decompose only at these elevated
temperatures, which reduces the available combustible mass at lower
temperatures. This delayed decomposition leads to a lower HRR, as
shown in Fig. 8(a).

In turn, this reduction in the HRR yields lowered heat flux reach-
ing the sample surface, slowing down the heating-up process of the
material and decreasing the pyrolysis rates. Consequently, the flame
advances more slowly over the unburnt material. This tendency is
reflected in flattened slopes of the flame position curves, which is
more clearly visible in Fig. 9(a). From an inverse viewpoint, Fig. 8(a)
also illustrates the opposite effect of decreasing 7, on the HRR. As
T, decreases from higher to lower temperatures, the material starts
to pyrolyse earlier, releasing more mass for combustion at these tem-
peratures, consequently leading to earlier sample consumption and
increased HRRs.

Similarly, higher values of the pyrolysis range AT lead to a decrease
in the HRR (Fig. 8(b)) and in the slope of the flame position curves
(Fig. 9(b)). Initially, it was expected that wider peaks would directly
increase the HRR because the rates at the peak tails are also increased.
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However, there is a competing effect: as the width of the peak increases,
the rates around the peak’s maximum values are diminished, as shown
in Fig. 7. This effect is dominant because more mass is decomposed at
these lower rates. Consequently, the net effect of larger AT values is a
slower overall pyrolysis and heat release rates.

The qualitative analysis suggests that both changes in 7, and AT
show a similar general effect: larger values of T, and AT produce an
inverse effect on the HRR and on the slope of the flame position curves
shown in Fig. 9. However, the impact of AT is practically negligible
compared to the influence of T),. For this reason, from this point forward
in the text the results and discussions will focus on the effects of T, and
myg, across all simulation groups described in Table 3.

3.1.2. Effects on the rate of spread (ROS)

Within the self-sustained phase of each simulation case, the rela-
tionship between the flame position and time was approximated using
a linear function, as presented in Figs. 9(a) and 9(b). The first derivative
of this linear function represents the rate of change of the flame position
(specifically, the leading edge) with respect to time, here referred to as
the ROS.

The ROS values for each simulation within each group are plotted
against the corresponding T, values used in each simulation, as de-
picted in Fig. 10(a). In this plot, the two gas phase grid resolutions
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used are denoted by different markers: triangles indicate the 1.5 mm
resolution, while circles refer to the 2.0 mm resolution. The solid
markers highlight the positions of the R3 peak at 210°C, 284 °C and
420°C, which are key positions in the MLR temperature range as
indicated before in Fig. 4. The ROS values for the reference simulation
cases (Case Oa and Ob) that employed the original UMD Model are
also presented. Since in the reference cases a small peak like R3 is not
present, it is not meaningful to establish a relation between the ROS and
the parameters describing the small peak. Therefore, the ROS values for
these cases are represented as horizontal lines in the figures, serving as
a baseline for comparison.

The trends observed in Fig. 10 indicate that the ROS decreases more
rapidly at lower 7, values, with the rate of decrease slowing as T,
continues to rise. This suggests that at more elevated temperatures, the
ROS values converge towards those of reference Cases Oa and Ob, be-
coming nearly identical at T, = 420 °C. Specifically, Groups la and 2a,
which have the same gas phase cell size, align with Case 0Oa, while
Groups 1b and 2b align with Case Ob. Understanding this behaviour
is crucial for assessing the impact of incorporating a small peak like
R3 into the pyrolysis model. This behaviour highlights that the effect
on the ROS is more pronounced when the small peak is positioned
at lower temperatures and practically negligible when it is located at
higher temperatures.
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Moreover, Groups 2a and 2b start with higher ROS values and show
a steeper decline compared to Groups la and 1b. This observation
suggests a stronger sensitivity of Groups 2a and 2b to T, changes,
indicating that the simulations in these groups are more affected by 7,
than those in Groups 1la and 1b. This increased sensitivity comes from
the larger mass fraction decomposed by the small peak in simulations
from Groups 2a and 2b (2% PMMA,,,, my = 0.02), as opposed to
simulations in Groups 1a and 1b (1 % PMMA,,, m; = 0.01). When T, is
reduced, a greater amount of material in Groups 2a and 2b undergoes
pyrolysis at these lower temperatures. With this, more combustible gas
is released earlier from a burning surface cell, leading to a larger flame.
The flame in turn releases more heat and heats up surrounding, not yet
burning, surface cells faster. Consequently, this feedback loop leads to
an increased HRR and sustains the flame spread. In this sense, the larger
initial mass fraction in Groups 2a and 2b results in a more pronounced
effect of T, changes on the ROS, leading to the observed steeper decline
in ROS as the material decomposes more rapidly at lower temperatures.
This dynamic highlights the critical role of m, and 7, in determining
the ROS sensitivity to the inclusion of the small R3 peak in the original
model.

The effects induced by changes in the position of the small peak,
through variations in 7),, are more clearly illustrated through the per-
centage variation in the ROS, as shown in Fig. 10(b). The ROS of
Case Oa is used as the reference for Groups 1a and 2a, while Case Ob
serves as the reference for Groups 1b and 2b. The grey-shaded area
in Fig. 10(b) represents a 5% variation around the reference cases (0a
and Ob), which is highlighted here as it is considered indicative of low
variation.

The plot in Fig. 10(b) shows that percentage variations in ROS
consistently exceed the 5% threshold across all simulation groups as
T, decreases. In Groups 2a and 2b, this threshold is surpassed when R3
is positioned within the temperature range of approximately 168 °C to
310°C. For Group 1a, the ROS exceeds this threshold when R3 is located
between 168 °C to 210 °C, while in Group 1b, the threshold is surpassed
for R3 placements within 168 °C to 240°C. The largest ROS increase
observed is over 18 % for peaks with a mass fraction of 0.02 and 10 %
for peaks with a mass fraction of 0.01, occurring when T, = 168°C.
These maximal ROS variations, ranging from 10% to 18 %, represent
the theoretical upper limits of the ROS’s sensitivity to the addition of
the small R3 peak at 168 °C. Along with the intermediate variations ob-
served as the R3 peak is shifted across the pyrolysis temperature range,
these results provide insight into the extent to which the predicted ROS
responds to this adjustment in the original model.

Particular attention should be paid to the solid markers in Fig. 10,
which identify specific cases where the R3 peak is positioned at 210 °C,
284°C, and 420°C (as shown in Figs. 3 and 4(a)). These peak posi-
tions are especially significant as they improve the alignment between
the model and the experimental TGA data by refining the fit at the
shoulders of the main peaks in the original model. Among these con-
figurations, the largest ROS variations occur when the R3 peak is
positioned at 210°C. This placement leads to an approximate ROS
increase of 13 % for a mass fraction of 0.02 and 6 % for a mass fraction
of 0.01, as shown by the solid markers in Fig. 10(b). Note, that the
R3 peak with a mass fraction of 0.02 positioned at 210°C, leads to
a better representation of the sample pyrolysis as indicated by the
reduced RMSE (Fig. 5).

In the context of the present theoretical study, these variations are
considered to represent a significant influence on the ROS when the
R3 peak is placed at 210 °C, particularly given that they result from the
inclusion of small peaks decomposing only 1 % to 2 % of the material’s
total mass. However, in practical applications, the acceptability of such
variability in the ROS depends on the specific context, and the degree of
variability regarded as tolerable for a given application. This judgment
should be informed by comparisons with experimental data and, most
importantly, the associated experimental uncertainties. Typically, the
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predicted ROS should be evaluated relative to an experimentally aver-
aged ROS and its uncertainty range to determine whether the observed
variability falls within acceptable limits.

As illustrated in Fig. 5, the fit to experimental TGA data improves
relative to the original model across all tested R3 peak locations marked
by solid markers in Fig. 10(b), with the best alignment achieved when
R3 is placed at 284 °C. However, for a fixed mass fraction, this position
— while yielding the lowest RMSE compared to the TGA data — does
not correspond to the largest ROS variations. This result indicates a
distinction between optimising model fit to TGA data and the ROS
sensitivity to the inclusion of the small R3 peak. While positioning
the R3 peak at 284 °C provides the most accurate reproduction of the
experimental MLR data, its impact on ROS is relatively moderate com-
pared to 210°C. This suggests that improving the fit to TGA data does
not always translate to equivalent changes in ROS predictions. More
importantly, these findings highlight which specific deviations between
the original model and experimental data, as shown in Fig. 3, should
be given greater attention when refining the model fit: deviations in
low-temperature regions, should be prioritised over adjustments in
high-temperature regions. This is because the ROS is more sensitive to
peaks positioned in the lower-temperature range, making them more
influential on ROS predictions.

The plots in Fig. 10 demonstrate that the non-linear decay in the
ROS as T, is increased is consistent across the different simulation
groups. However, this decay is not smooth, as small oscillations are
observed in the ROS for each simulation case. These oscillations are
attributed to numerical artefacts, primarily due to default settings in
FDS that impact the temporal and spatial resolutions of the radiation
field. By default, these settings result in the radiation transport equation
being fully updated only every 15 time steps. This update frequency
may lead to delays in radiation transport across the domain, especially
when multiple meshes are used [32]. While a detailed investigation
into these effects is beyond the scope of this study, preliminary tests
(not shown) suggest that the impact of these artefacts on the results is
negligible. Addressing the issue by increasing the update frequency of
the radiation field would significantly increase computational demands,
rendering such adjustments impractical for the purposes of this work.

Another important factor affecting the ROS predictions shown in
Fig. 10(a) is the gas-phase cell size. In both simulation groups, the
higher-resolution cases (Group la and Group 2a) predict larger ROS
values than their lower-resolution counterparts (Group 1b and Group
2b). In this setup, the ‘a’ denotes higher resolution, which leads to
these increased ROS predictions (see Table 3). Higher mesh resolutions
enhance the spatial accuracy of heat transfer calculations, resulting in
increased heat fluxes reaching the sample, which in turn raises the
predicted ROS. However, while finer resolutions theoretically enhance
the predictive accuracy of the model, validation against experimental
data is essential to confirm any actual improvements. Further validation
is also needed to determine how the ROS variations observed in this
study translate into meaningful improvements in model predictions.

With respect to validation of the ROS against experimental data:
as of writing this article, no comparable small-scale flame spread
experiment data with the MaCFP PMMA is available. Qualitatively, a
comparison with work by Korobeinichev et al. [41] can be made. They
performed flame spread experiments over horizontal on cast PMMA
of the same width (100 mm) under open-air conditions, placed on top
of insulating material. However, the sample had a lower thickness
of 5mm than the 6 mm used by Fiola et al. [7]. Korobeinichev et al.
reported a ROS of 6.0 mm min~! [41]. The baseline simulation cases
presented here (original UMD Model), predicted flame spread rates of
5.10mmmin~' and 4.73mmmin~" for gas-phase resolutions of 1.5mm
and 2.0 mm, respectively. It is expected that a thinner sample leads
to a faster spread rate [41,42], thus the predicted ROS in this study
seems reasonable. Considering this, along with the absence of reported
experimental uncertainties, which limits further comparisons, the sim-
ulation models used in the present study are viewed as an adequate
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Fig. 10. Effects on the rates of spread induced by changes in the peak temperature (7)) of the small R3 peak. Results in black refer to peak mass fractions equals to m, = 0.01, and
blue results refer to peak mass fractions equal to m, = 0.02. (a) Absolute values of ROS and (b) percentage variations in the ROS relative to the reference simulation Cases Oa and Ob.

Solid markers highlight the positions of the R3 peak at 210°C, 284°C and 420°C.

representation of the expected spread rates, even though they are not
directly comparable. The selected sub-models represent state-of-the-art
practices within FDS for predicting flame spread. As such, the results
presented here draw attention to the relevance to the ROS predictions
of accounting for small MLR peaks in the pyrolysis model, particularly
those occurring at lower temperatures.

It is essential to point out that the ROS variations induced by
the inclusion of the small R3 peak in the original UMD model are
representative of the behaviour of the models and simulation setups
considered in this study. Such models refer to the UMD Model as well
as the selected sub-models and parameters within FDS that govern the
simulation. The scope of this work is limited to examining how the ROS
predicted for a horizontal flame spread over a PMMA plate responds
to the inclusion of a small R3 peak when using the UMD model. It
does not suggest that every predictive simulation model built with FDS
would exhibit the same response to such modifications. That being said,
it stands to reason that changes in the geometry of the combustible
surfaces and their surroundings that would lead to faster flame spread
for the UMD model, should qualitatively yield a similar response for
the modified UMD models.

3.2. PCE-based analysis

To determine which of the chosen PCE orders best represents the
general model behaviour, both second- and third-order PCEs were
tested against the samples used in the one-at-a-time analysis. Specif-
ically, input samples of 7, and AT from simulation Groups 1b and
2b were supplied to the PCE approximations to predict the ROS. It is
important to note that such datasets were used solely for testing, and
not for training the PCEs. The results for PCE orders 2 and 3 are shown
in Fig. 11, where the solid circles represent the PCE predictions of the
ROS, and the white circles the actual FDS predictions.

From Fig. 11 it can be seen that both PCE orders were able to
capture the overall trend of the relationships between the ROS and the
input parameters describing the small peak. As previously discussed,
the fluctuations present in the FDS data are assumed to be artefacts
related to the spatial resolution in the simulations. Therefore, not
capturing these fluctuations in detail is not considered problematic.
Instead, the focus is on capturing the general trends exhibited by the
actual simulation data.

The proximity of PCE predictions and FDS predictions is measured
by the RMSE. The RMSE results for each case presented in Fig. 11 are
presented in Table 5. It can be observed that for datasets in Group 1b,
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Table 5
Root mean square errors (RMSE) calculated for each test dataset.
Ref data RMSE Group 1b RMSE Group 2b Mean RMSE
PCE order 2 Fig. 11(a) 0.024 0.041 0.033
Fig. 11(b) 0.019 0.031 0.025
PCE order 3 Fig. 11(a) 0.027 0.036 0.031
Fig. 11(b) 0.028 0.019 0.023

the lowest RMSEs correspond to PCE order 2, whereas for datasets in
Group 2b, the lowest RMSEs correspond to PCE order 3. These results
indicate that the relationship between the ROS and the one-at-a-time
variations in T, and AT is better represented by the second-order PCE
when the peak consumes 1% of the total material mass, and by the
third-order PCE when the peak consumes 2 % of the mass. This occurs
because the second-order PCE is sufficient to capture the lower level
of non-linearity observed for simulations in Group 1b. Similarly, the
third-order PCEs can better capture increased non-linearities, which are
more characteristic of the simulations in Group 2b.

The results obtained from the PCE analysis for orders 2 and 3 are
presented in Table 6. Both PCE orders lead to similar estimations of
mean and standard deviation: the mean ROS converges to 4.9 mmmin~',
and the standard deviation converges to 0.2mmmin~'. The mean ROS
represents the overall expected ROS, taking into account the uncer-
tainty in all three inputs 7,, AT and m,, while the standard deviation
represents the variability around this mean value, representing the un-
certainty in the ROS. In terms of relative values, this result corresponds
to +8 % (two standard deviations) of variability in the ROS, induced
solely by the uncertain parameters defining the small R3 peak.

Despite the consistent mean and standard deviation values ob-
tained from both PCE orders, the sensitivity indices calculated from the
second- and third-order PCE approximations show some non-negligible
variability. As seen in Table 6, these differences are more significant
for S1 and ST indices associated with parameters 7, and m,. These
differences can be attributed to the improved ability of higher-order
polynomials to capture non-linearities. Since the sensitivity indices are
calculated from the coefficients of the PCE, the inclusion of higher-
order terms changes these coefficients and their interpretation. Conse-
quently, the calculated sensitivity indices can vary, even though the
mean and standard deviation might not significantly change, as the
overall distribution shape is well captured by the lower-order terms.

For instance, with the PCE order 2, the S1(T,) is equal to 0.76,
indicating that 76 % of the uncertainty in the ROS stems from varying
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Fig. 11. Validation of PCE orders 2 and 3 against simulation data used in the one-at-a-time analysis.
Table 6 1.0
Uncertainty quantification and Sobol sensitivity indices. : — st
PCE order 2 PCE order 3 B ST
Mean ROS (mmmin~") 4.938 4.931 0.8 A
Standard deviation (mmmin") 0.219 0.224
(%]
S1 (T,) 0.76 0.81 S
S1 (4T) 0.02 0.01 2067
S1 (mgy) 0.12 0.09 2
S
S2 (T,, AT) 0 0 E 0.4
S2 (T,, my) 0.09 0.08 5
S2 (4T, my) 0 0 n
83 (T, AT, my) 0.01 0.01 0.2 A
ST (T,) 0.85 0.90
ST (4T) 0.03 0.01
0.0 ?
ST (mg) 0.22 0.18 AT T, Mo

the position of the small peak (7,) individually. In contrast, the PCE
order 3 estimates this value to be 0.81 (81%). In both PCE approxi-
mations, the estimations of the S2(T,, my) indices are similar, showing
that around 8 % to 9 % of the ROS uncertainty is caused by interaction
effects between the peak position and the mass fraction of the small
peak (mg). Similarly, the S3 index, which indicates the interaction
effects when all three inputs (7}, AT, and mj) are varied together, also
does not change significantly between the PCE orders. Therefore, the
variations observed in the ST indices between PCE orders mainly reflect
the variation in the S1 indices.

Although the estimates of the ST indices vary between PCE orders,
the overall ranking of parameter importance remains similar in both
polynomial approximations. The consistently large values of ST(T),)
highlight the dominant role of the peak position (7,) in the ROS
uncertainty. To a considerably smaller extent, the peak mass fraction
(my) is the second most important factor, followed by the minor role of
the peak width (4T). This order of parameter importance aligns with
the findings of the one-at-a-time analysis, which also demonstrated that
the influence of the small peak on the ROS was primarily governed
by T,. It is worth pointing out that the indices capture the influence
of the parameters not only at the specific samples used in the one-
at-a-time analysis, but across the entire parameter space defined by
the uncertainty intervals of each parameter. They therefore provide
a global measure of parameter importance that extends beyond the
limited scope of discrete sampling points.

To better illustrate how the parameters defining the small peak
influences the ROS, the sensitivity indices in Table 6 estimated based
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Fig. 12. First-order (S1) and total-order (ST) sensitivity indices for the parameters
defining the small peak, estimated using the third-order PCE. The indices demonstrate
that the peak position (7}) is the dominant factor influencing the ROS, while the peak
mass fraction (mg) has a secondary effect, and the peak width (4T) plays a negligible
role.

on the third-order PCE are shown in a bar plot in Fig. 12. The plot high-
lights the dominance of the peak temperature T,,, with both first-order
(S1) and total-order (ST) indices being significantly higher than those
of my or AT. While m, exhibits limited sensitivity, AT has negligible
impact, consistent with the trends discussed above.

Fig. 13 shows the response surface that illustrates the relationship
between the variation in the ROS and the two most influential param-
eters of the small peak, 7, and m,. The ROSs were obtained from the
third-order PCE approximation and variations were calculated relative
to the ROS of Case Ob. The colour scale in the figures highlights key
regions of the parameter space, visually depicting how combinations of
T, and mj, influence the ROS. For instance, areas where the peak tem-
perature T, is low and the initial mass fraction m is high correspond to
the highest ROS variations, represented by light green and yellow hues,
whereas the opposite effect is shown in dark blue shades. Additionally,
the response surface includes combinations of T, and m, used in the
one-at-a-time analysis. Cases where m, was fixed at 0.01 and T, was
varied to 210°C, 284 °C, and 420 °C are marked with diamond symbols,
while cases where m, was fixed at 0.02 and T, was varied similarly are
indicated by crosses.
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Fig. 13. Response surface illustrating the relationship between the variation in the ROS and the two most influential parameters of the small peak, 7, and m,. The ROSs were
obtained from the third-order PCE approximation and variations were calculated relative to the ROS of Case 0b. (a) 3-D view; (b) 2-D view, where markers indicate the combinations

between T, and m, used in the one-at-a-time analysis.
4. Conclusions

This study explored the impact of including an additional small MLR
peak on the ROS predictions of a simplified flame spread simulation
(horizontal flame spread over a PMMA sample) conducted using FDS.
The peak was introduced to (i) improve agreement between the original
pyrolysis model and measured TGA data, and (ii) to systematically
investigate small MLR fluctuations occurring at various points along
the pyrolysis temperature range. This study showed that the general
approach of neglecting MLR fluctuations in modelling pyrolysis may
not necessarily be valid, as there is at least one scenario where a
non-negligible effect on the ROS can be demonstrated. Future work is
needed to gain more understanding of this effect in general.

One-at-a-time and global sensitivity analyses were conducted, re-
vealing that the peak position has the greatest impact on the ROS,
followed by the peak mass fraction, while the peak width has a negligi-
ble effect. Specifically, it was demonstrated that the inclusion of a small
peak can significantly influence the ROS predictions when the peak
is positioned at lower temperatures, but has little to no effect when
located at higher temperatures. This effect becomes more pronounced
for peaks decomposing larger mass fractions, with ROS increases ob-
served between 6% to 13 % relative to the original model, for peaks
decomposing 1% to 2% of the sample’s total mass, respectively.

Within the scope of this theoretical study, these variations reflect
the global behaviour of the simulation model, which incorporates sub-
models that represent state-of-the-art practices for predicting flame
spread. Accordingly, the results obtained help understand the impor-
tance of improving the agreement between pyrolysis models and TGA
data by accounting for small MLR fluctuations: while fluctuations at
higher temperatures have a minor influence on the ROS and can be
neglected, those at lower temperatures can significantly enhance the
predicted spread rates and should not be overlooked. Yet, in prac-
tical applications, whether or not such variabilities in the ROS are
acceptable, depends on the specific context and the degree of variation
considered tolerable for a given scenario. Ideally, this judgment should
be informed by comparisons with averaged experimental data and,
most importantly, the associated experimental uncertainties.

Finally, this first step towards understanding the role of minor
pyrolysis reactions may support the question about the impact of exper-
imental variations in TGA measurements. A general quantification of
the impact of MLR fluctuations may define the accuracy and precision
needed from TGA measurements.
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Acronyms
FDS Fire Dynamics Simulator
HRR Heat release rate
MCC Microscale combustion calorimeter
MLR Mass loss rate
PCE Polynomial Chaos Expansion
PMMA Poly(methyl methacrylate)
PMMA it Material component of PMMA sample
PMMA;,« Intermediate component from PMMA_,.;; pyrolysis
PMMAp,, Material component of PMMA sample
PMMA,, Combustible gas from PMMA pyrolysis
RMSE Root mean square error
ROS Rate of spread
R1 Pyrolysis reaction associated with PMMA, ;¢
R2 Pyrolysis reaction associated with PMMA;,
R3 Pyrolysis reaction associated with PMMA,,,
S1 First-order sensitivity index
S2 Second-order sensitivity index
S3 Third-order sensitivity index
ST Total-order sensitivity index
TGA Thermogravimetric analysis
T, Peak temperature of reaction R3
AT Pyrolysis range of reaction R3

CRediT authorship contribution statement

Tassia L.S. Quaresma: Writing — review & editing, Writing — orig-
inal draft, Visualization, Validation, Software, Methodology, Inves-
tigation, Formal analysis, Data curation, Conceptualization. Tristan
Hehnen: Writing — review & editing, Validation, Conceptualization.
Lukas Arnold: Writing — review & editing, Validation, Supervision,
Software, Resources, Project administration, Methodology, Funding ac-
quisition, Conceptualization.

Data and software availability

The data is publicly available in: https://doi.org/10.5281/zenodo.
12804448.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to
influence the work reported in this paper.


https://doi.org/10.5281/zenodo.12804448
https://doi.org/10.5281/zenodo.12804448
https://doi.org/10.5281/zenodo.12804448

T.L.S. Quaresma et al.

Acknowledgements

We gratefully acknowledge the computing time granted through
the project on the CoBra-system, funded by the German Federal Min-
istry of Education and Research with the grant number 13N15497.
This research was partially funded by the German Federal Ministry of
Education and Research with the grant number 13N15497.

Data availability

The data is publicly available in: https://doi.org/10.5281/zenodo.
12804448.

References

[1]

[2]

[3]

[4]

[5]

(6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Thomas Rogaume, Thermal decomposition and pyrolysis of solid fuels: Objec-
tives, challenges and modelling, Fire Saf. J. 106 (2019) 177-188, http://dx.doi.
org/10.1016/j.firesaf.2019.04.016.

Karen De Lannoye, Corinna Trettin, Alexander Belt, E.A. Reinecke, Roland
Goertz, Lukas Arnold, The influence of experimental conditions on the mass
loss for TGA in fire safety science, Fire Saf. J. 144 (2024) 104079, http:
//dx.doi.org/10.1016/j.firesaf.2023.104079.

Ilya M. Sobol, Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates, Math. Comput. Simulation 55 (1-3) (2001)
271-280, http://dx.doi.org/10.1016/S0378-4754(00)00270-6.

Jonathan Feinberg, Hans Petter Langtangen, Chaospy: An open source tool for
designing methods of uncertainty quantification, J. Comput. Sci. 11 (2015)
46-57, http://dx.doi.org/10.1016/j.jocs.2015.08.008.

Tatyana A. Bolshova, Ilya E. Gerasimov, Andrey G. Shmakov, Oleg P. Ko-
robeinichev, Combustion of spherical PMMA samples in still air simulated using
a skeletal chemical kinetic mechanism, Fire Saf. J. 138 (2023) 103807, http:
//dx.doi.org/10.1016/j.firesaf.2023.103807.

Izabella Vermesi, Nils Roenner, Paolo Pironi, Rory M. Hadden, Guillermo Rein,
Pyrolysis and ignition of a polymer by transient irradiation, Combust. Flame 163
(2016) 31-41, http://dx.doi.org/10.1016/j.combustflame.2015.08.006.

Gregory J. Fiola, Dushyant M. Chaudhari, Stanislav I. Stoliarov, Comparison of
pyrolysis properties of extruded and cast poly (methyl methacrylate), Fire Saf.
J. 120 (2021) 103083, http://dx.doi.org/10.1016/j.firesaf.2020.103083.

Patrick Lauer, Tristan Hehnen, Fabian Briannstrom, Lukas Arnold, Corinna
Trettin, Karen De Lannoye, Pyrolysis model data set contribution for the Macfp
workshop April 2021 - dataset, 2021, http://dx.doi.org/10.5281/zenodo.470457,
Zenodo.

Patrick Lauer, Lukas Arnold, Fabian Brannstrém, Inverse modelling of pyroliza-
tion kinetics with ensemble learning methods, Fire Saf. J. 136 (2023) 103744,
http://dx.doi.org/10.1016/j.firesaf.2023.103744.

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, J.L. Mieloszynski, Thermal
degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG
curves, Polym. Degrad. Stab. 79 (2) (2003) 271-281, http://dx.doi.org/10.1016/
S0141-3910(02)00291-4.

Tristan Hehnen, Lukas Arnold, PMMA pyrolysis simulation — from micro- to real-
scale, Fire Saf. J. 141 (2023) 103926, http://dx.doi.org/10.1016/j.firesaf.2023.
103926.

W.R. Zeng, S.F. Li, Wan Ki Chow, Review on chemical reactions of burning
poly (methyl methacrylate) PMMA, J. Fire Sci. 20 (5) (2002) 401-433, http:
//dx.doi.org/10.1177/0734904102020005482.

B.J. Holland, J.N. Hay, The effect of polymerisation conditions on the kinetics
and mechanisms of thermal degradation of PMMA, Polym. Degrad. Stab. 77 (3)
(2002) 435-439, http://dx.doi.org/10.1016/5S0141-3910(02)00100-3.

Matthew DiDomizio, Mark McKinnon, Impact of specimen preparation method
on thermal analysis testing and derived parameters, in: Symposium on Obtaining
Data for Fire Growth Models, ASTM International, 2023, pp. 64-87, http://dx.
doi.org/10.1520/STP164220210106.

David Morrisset, Simén Santamaria, Rory Hadden, Richard Emberley, Implica-
tions of data smoothing on experimental mass loss rates, Fire Saf. J. 131 (2022)
103611, http://dx.doi.org/10.1016/j.firesaf.2022.103611.

Sergey Vyazovkin, Alan K. Burnham, José M. Criado, Luis A. Pérez-Maqueda,
Crisan Popescu, Nicolas Sbirrazzuoli, ICTAC kinetics committee recommendations
for performing kinetic computations on thermal analysis data, Thermochim. Acta
520 (1-2) (2011) 1-19, http://dx.doi.org/10.1016/j.tca.2011.03.034.

Morgan J. Hurley, Daniel T. Gottuk, John R. Hall Jr., Kazunori Harada, Erica D.
Kuligowski, Milosh Puchovsky, John M. Watts Jr., Christopher J. Wieczorek, et
al., SFPE Handbook of Fire Protection Engineering, Springer, 2015.

15

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Fire Safety Journal 152 (2025) 104344

Alexandra Viitanen, Simo Hostikka, Jukka Vaari, CFD simulations of fire prop-
agation in horizontal cable trays using a pyrolysis model with stochastically
determined geometry, Fire Technol. 58 (5) (2022) 3039-3065, http://dx.doi.
org/10.1007/s10694-022-01291-6.

T. Nyazika, M. Jimenez, F. Samyn, S. Bourbigot, Pyrolysis modeling, sensitivity
analysis, and optimization techniques for combustible materials: A review, J. Fire
Sci. 37 (4-6) (2019) 377-433, http://dx.doi.org/10.1177/0734904119852740.
P. Lauer, T. Hehnen, C. Trettin, F. Brannstrom, L. Arnold, Role of the cost
function for material parameter estimation, in: Fire and Evacuation Modelling
Technical Conference, 2020, http://dx.doi.org/10.5281/zenodo.4007595.

1. Leventon, B. Batiot, M. Bruns, S. Hostikka, Y. Nakamura, P. Reszka, T. Ro-
gaume, S. Stoliarov, Measurement and computation of fire phenomena (MaCFP)
- condensed phase material database (MATL-DB), 2023, https://github.com/
MaCFP/matl-db/tree/master/PMMA/Material_Properties, Commit: 2393d51.
Toshimi Hirata, Takashi Kashiwagi, James E. Brown, Thermal and oxidative
degradation of poly (methyl methacrylate): weight loss, Macromolecules 18 (7)
(1985) 1410-1418, http://dx.doi.org/10.1021/ma00149a010.

Lewis E. Manring, Thermal degradation of poly (methyl methacrylate). 2. Vinyl-
terminated polymer, Macromolecules 22 (6) (1989) 2673-2677, http://dx.doi.
org/10.1021/ma00196a024.

Lewis E. Manring, Dotsevi Y. Sogah, Gordon M. Cohen, Thermal degra-
dation of poly (methyl methacrylate). 3. Polymer with head-to-head link-
ages, Macromolecules 22 (12) (1989) 4652-4654, http://dx.doi.org/10.1021/
ma00202a048.

Takashi Kashiwagi, Atsushi Inaba, James E. Brown, Koichi Hatada, Tatsuki
Kitayama, Eiji Masuda, Effects of weak linkages on the thermal and oxidative
degradation of poly (methyl methacrylates), Macromolecules 19 (8) (1986)
2160-2168, http://dx.doi.org/10.1021/ma00162a010.

Dushyant M. Chaudhari, Gregory J. Fiola, Stanislav I. Stoliarov, Experimental
analysis and modeling of buoyancy-driven flame spread on cast poly (methyl
methacrylate) in corner configuration, Polym. Degrad. Stab. 183 (2021) 109433,
http://dx.doi.org/10.1016/j.polymdegradstab.2020.109433.

Yan Ding, Isaac T. Leventon, Stanislav I. Stoliarov, An analysis of the sensitivity
of the rate of buoyancy-driven flame spread on a solid material to uncertainties in
the pyrolysis and combustion properties. Is accurate prediction possible? Polym.
Degrad. Stab. 214 (2023) 110405, http://dx.doi.org/10.1016/j.polymdegradstab.
2023.110405.

Nicolas Bal, Guillermo Rein, Numerical investigation of the ignition delay time
of a translucent solid at high radiant heat fluxes, Combust. Flame 158 (6) (2011)
1109-1116, http://dx.doi.org/10.1016/j.combustflame.2010.10.014.

Richard E. Lyon, Richard N. Walters, Pyrolysis combustion flow calorimetry, J.
Anal. Appl. Pyrolysis (ISSN: 0165-2370) 71 (1) (2004) 27-46, http://dx.doi.org/
10.1016/50165-2370(03)00096-2, URL https://www.sciencedirect.com/science/
article/pii/S0165237003000962, Practical Applications of Analytical Pyrolysis
(special section).

Joshua D. Swann, Yan Ding, Mark B. McKinnon, Stanislav I. Stoliarov, Controlled
atmosphere pyrolysis apparatus II (CAPA II): A new tool for analysis of
pyrolysis of charring and intumescent polymers, Fire Saf. J. (ISSN: 0379-7112)
91 (2017) 130-139, http://dx.doi.org/10.1016/j.firesaf.2017.03.038, URL https:
//www.sciencedirect.com/science/article/pii/S0379711217300541, Fire Safety
Science: Proceedings of the 12th International Symposium.

Téssia L.S. Quaresma, Tristan Hehnen, Lukas Arnold, Sensitivity analysis for
an effective transfer of estimated material properties from cone calorimeter to
horizontal flame spread simulations, Fire Saf. J. (2024) 104116, http://dx.doi.
org/10.1016/j.firesaf.2024.104116.

K. McGrattan, S. Hostikka, J. Floyd, R. McDermott, M. Vanella, Fire Dynamics
Simulator (version FDS6.7.6-810-ge59f90f-HEAD) — User’s Guide, US Department
of Commerce, Technology Administration, NIST, 2005, http://dx.doi.org/10.
6028/NIST.SP.1019.

Kevin McGrattan, Simo Hostikka, Randall McDermott, Jason Floyd, Craig Wein-
schenk, Kristopher Overholt, Fire dynamics simulator technical reference guide
volume 1: mathematical model, NIST Spec. Publ. 1018 (1) (2013) 175.

NIST, FDS validation repository on Github, 2023, https://github.com/firemodels/
fds/tree/master/Validation/NIST NRC_Parallel Panels, Commit: 300ee40.

Jing Li, Stanislav I. Stoliarov, Measurement of kinetics and thermodynamics of
the thermal degradation for non-charring polymers, Combust. Flame 160 (7)
(2013) 1287-1297, http://dx.doi.org/10.1016/j.combustflame.2013.02.012.
NIST, FDS  validation  repository, NIST NRC  parallel panels,
PMMA 60 kW_1_cm.fds; Github, 2023, https://github.com/firemodels/fds/
blob/300ee407ca64757098623ccc7edel 2ae548137f8/Validation/NIST_NRC_
Parallel Panels/FDS Input Files/PMMA 60 kW_1_cm.fds, Commit: 300ee40.
Andrea Saltelli, Ksenia Aleksankina, William Becker, Pamela Fennell, Federico
Ferretti, Niels Holst, Sushan Li, Qiongli Wu, Why so many published sensitivity
analyses are false: A systematic review of sensitivity analysis practices, Environ.
Model. Softw. 114 (2019) 29-39, http://dx.doi.org/10.1016/j.envsoft.2019.01.
012.


https://doi.org/10.5281/zenodo.12804448
https://doi.org/10.5281/zenodo.12804448
https://doi.org/10.5281/zenodo.12804448
http://dx.doi.org/10.1016/j.firesaf.2019.04.016
http://dx.doi.org/10.1016/j.firesaf.2019.04.016
http://dx.doi.org/10.1016/j.firesaf.2019.04.016
http://dx.doi.org/10.1016/j.firesaf.2023.104079
http://dx.doi.org/10.1016/j.firesaf.2023.104079
http://dx.doi.org/10.1016/j.firesaf.2023.104079
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1016/j.jocs.2015.08.008
http://dx.doi.org/10.1016/j.firesaf.2023.103807
http://dx.doi.org/10.1016/j.firesaf.2023.103807
http://dx.doi.org/10.1016/j.firesaf.2023.103807
http://dx.doi.org/10.1016/j.combustflame.2015.08.006
http://dx.doi.org/10.1016/j.firesaf.2020.103083
http://dx.doi.org/10.5281/zenodo.470457
http://dx.doi.org/10.1016/j.firesaf.2023.103744
http://dx.doi.org/10.1016/S0141-3910(02)00291-4
http://dx.doi.org/10.1016/S0141-3910(02)00291-4
http://dx.doi.org/10.1016/S0141-3910(02)00291-4
http://dx.doi.org/10.1016/j.firesaf.2023.103926
http://dx.doi.org/10.1016/j.firesaf.2023.103926
http://dx.doi.org/10.1016/j.firesaf.2023.103926
http://dx.doi.org/10.1177/0734904102020005482
http://dx.doi.org/10.1177/0734904102020005482
http://dx.doi.org/10.1177/0734904102020005482
http://dx.doi.org/10.1016/S0141-3910(02)00100-3
http://dx.doi.org/10.1520/STP164220210106
http://dx.doi.org/10.1520/STP164220210106
http://dx.doi.org/10.1520/STP164220210106
http://dx.doi.org/10.1016/j.firesaf.2022.103611
http://dx.doi.org/10.1016/j.tca.2011.03.034
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb17
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb17
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb17
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb17
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb17
http://dx.doi.org/10.1007/s10694-022-01291-6
http://dx.doi.org/10.1007/s10694-022-01291-6
http://dx.doi.org/10.1007/s10694-022-01291-6
http://dx.doi.org/10.1177/0734904119852740
http://dx.doi.org/10.5281/zenodo.4007595
https://github.com/MaCFP/matl-db/tree/master/PMMA/Material_Properties
https://github.com/MaCFP/matl-db/tree/master/PMMA/Material_Properties
https://github.com/MaCFP/matl-db/tree/master/PMMA/Material_Properties
http://dx.doi.org/10.1021/ma00149a010
http://dx.doi.org/10.1021/ma00196a024
http://dx.doi.org/10.1021/ma00196a024
http://dx.doi.org/10.1021/ma00196a024
http://dx.doi.org/10.1021/ma00202a048
http://dx.doi.org/10.1021/ma00202a048
http://dx.doi.org/10.1021/ma00202a048
http://dx.doi.org/10.1021/ma00162a010
http://dx.doi.org/10.1016/j.polymdegradstab.2020.109433
http://dx.doi.org/10.1016/j.polymdegradstab.2023.110405
http://dx.doi.org/10.1016/j.polymdegradstab.2023.110405
http://dx.doi.org/10.1016/j.polymdegradstab.2023.110405
http://dx.doi.org/10.1016/j.combustflame.2010.10.014
http://dx.doi.org/10.1016/S0165-2370(03)00096-2
http://dx.doi.org/10.1016/S0165-2370(03)00096-2
http://dx.doi.org/10.1016/S0165-2370(03)00096-2
https://www.sciencedirect.com/science/article/pii/S0165237003000962
https://www.sciencedirect.com/science/article/pii/S0165237003000962
https://www.sciencedirect.com/science/article/pii/S0165237003000962
http://dx.doi.org/10.1016/j.firesaf.2017.03.038
https://www.sciencedirect.com/science/article/pii/S0379711217300541
https://www.sciencedirect.com/science/article/pii/S0379711217300541
https://www.sciencedirect.com/science/article/pii/S0379711217300541
http://dx.doi.org/10.1016/j.firesaf.2024.104116
http://dx.doi.org/10.1016/j.firesaf.2024.104116
http://dx.doi.org/10.1016/j.firesaf.2024.104116
http://dx.doi.org/10.6028/NIST.SP.1019
http://dx.doi.org/10.6028/NIST.SP.1019
http://dx.doi.org/10.6028/NIST.SP.1019
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb33
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb33
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb33
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb33
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb33
https://github.com/firemodels/fds/tree/master/Validation/NIST_NRC_Parallel_Panels
https://github.com/firemodels/fds/tree/master/Validation/NIST_NRC_Parallel_Panels
https://github.com/firemodels/fds/tree/master/Validation/NIST_NRC_Parallel_Panels
http://dx.doi.org/10.1016/j.combustflame.2013.02.012
https://github.com/firemodels/fds/blob/300ee407ca64757098623ccc7ede12ae548137f8/Validation/NIST_NRC_Parallel_Panels/FDS_Input_Files/PMMA_60_kW_1_cm.fds
https://github.com/firemodels/fds/blob/300ee407ca64757098623ccc7ede12ae548137f8/Validation/NIST_NRC_Parallel_Panels/FDS_Input_Files/PMMA_60_kW_1_cm.fds
https://github.com/firemodels/fds/blob/300ee407ca64757098623ccc7ede12ae548137f8/Validation/NIST_NRC_Parallel_Panels/FDS_Input_Files/PMMA_60_kW_1_cm.fds
https://github.com/firemodels/fds/blob/300ee407ca64757098623ccc7ede12ae548137f8/Validation/NIST_NRC_Parallel_Panels/FDS_Input_Files/PMMA_60_kW_1_cm.fds
https://github.com/firemodels/fds/blob/300ee407ca64757098623ccc7ede12ae548137f8/Validation/NIST_NRC_Parallel_Panels/FDS_Input_Files/PMMA_60_kW_1_cm.fds
http://dx.doi.org/10.1016/j.envsoft.2019.01.012
http://dx.doi.org/10.1016/j.envsoft.2019.01.012
http://dx.doi.org/10.1016/j.envsoft.2019.01.012

T.L.S.

[38]

[39]

[40]

Quaresma et al.

Mark B. McKinnon, Evaluation of uncertainty in direct measurement for param-
eterization of pyrolysis models, Part I: Thermal analysis, Fire Saf. J. 141 (2023)
104000, http://dx.doi.org/10.1016/j.firesaf.2023.104000.

Hamza Jamil, Fabian Brénnstrom, Intrusive and non-intrusive uncertainty quan-
tification methodologies for pyrolysis modeling, Fire Saf. J. 143 (2024) 104060,
http://dx.doi.org/10.1016/j.firesaf.2023.104060.

Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica
Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola, Global Sensitivity
Analysis: The Primer, John Wiley & Sons, 2008.

16

[41]

[42]

Fire Safety Journal 152 (2025) 104344

O. Korobeinichev, M. Gonchikzhapov, A. Tereshchenko, I. Gerasimov, A.
Shmakov, A. Paletsky, Al. Karpov, An experimental study of horizontal flame
spread over PMMA surface in still air, Combust. Flame 188 (2018) 388-398,
http://dx.doi.org/10.1016/j.combustflame.2017.10.008.

L. Jiang, C.H. Miller, M.J. Gollner, J. Sun, Sample width and thickness effects
on horizontal flame spread over a thin PMMA surface, Proc. Combust. Inst. 36
(2) (2017) 2987-2994, http://dx.doi.org/10.1016/j.proci.2016.06.157.


http://dx.doi.org/10.1016/j.firesaf.2023.104000
http://dx.doi.org/10.1016/j.firesaf.2023.104060
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb40
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb40
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb40
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb40
http://refhub.elsevier.com/S0379-7112(25)00008-6/sb40
http://dx.doi.org/10.1016/j.combustflame.2017.10.008
http://dx.doi.org/10.1016/j.proci.2016.06.157

	The influence of small mass loss rate peaks on the rate of spread of predictive flame spread simulations: A theoretical study
	Introduction
	Motivation
	PMMA pyrolysis

	Methods
	Numerical modelling of flame spread
	Solid phase
	Gas phase

	Analysis of small MLR peaks
	One-at-a-time analysis
	Uncertainty quantification and global sensitivity analysis


	Results and Discussion
	One-at-a-time analysis
	Qualitative effects on the HRR and flame position curves
	Effects on the rate of spread (ROS)

	PCE-based analysis

	Conclusions
	Acronyms
	CRediT authorship contribution statement
	Data and Software Availability
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


