001040618 001__ 1040618
001040618 005__ 20250811202235.0
001040618 0247_ $$2doi$$a10.1140/epjp/s13360-025-06046-0
001040618 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01967
001040618 0247_ $$2WOS$$aWOS:001417585000003
001040618 037__ $$aFZJ-2025-01967
001040618 082__ $$a530
001040618 1001_ $$0P:(DE-Juel1)192138$$aSchmidt, Norberto Sebastián$$b0$$eCorresponding author
001040618 245__ $$aMonte Carlo simulations of cold neutron spectra for various para- and ortho-hydrogen ratios using different codes and nuclear data libraries
001040618 260__ $$aHeidelberg$$bSpringer$$c2025
001040618 3367_ $$2DRIVER$$aarticle
001040618 3367_ $$2DataCite$$aOutput Types/Journal article
001040618 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1742472779_13558
001040618 3367_ $$2BibTeX$$aARTICLE
001040618 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040618 3367_ $$00$$2EndNote$$aJournal Article
001040618 520__ $$aThis work compares simulated and measured neutron time-of-flight spectra for a cold neutron moderator with varyingpara-hydrogen concentrations (25%, 50%, 90% and 99.9%) embedded in a polyethylene thermal moderator. The primary neutronsare generated from the interaction of 45MeV protons with a tantalum target. The simulations were performed using several MonteCarlo codes (MCNP, PHITS, McStas, VITESS, and KDSource) together with nuclear data from the ENDF/B-VII.1 and JENDL−5.0libraries. The simulated primary neutron yields had deviations from experimental measurements ranging from 0.3 to 16% dependingon the code and the nuclear data used. The neutron moderation in the para-hydrogen moderator coupled with a neutron guide wasthen modeled. The neutron time distribution was measured by a 3He detector at the end of the guide. Comparison with experimentaldata showed good agreement, with relative differences of less than 15%. For the 99.9% para-hydrogen concentration, simulationswith JENDL−5.0 were in better agreement with the experimental data, while ENDF-B/VII.1 showed better agreement for the 25%para-hydrogen case. The analysis of the results obtained provides insights into the strengths and limitations of each Monte Carlo codeand nuclear data library combination. The observed discrepancies were analyzed, and possible sources of error were also identified.The analytical procedure followed in this work will help to improve the accuracy and reliability of neutron cold moderator design.
001040618 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001040618 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001040618 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040618 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
001040618 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
001040618 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
001040618 7001_ $$aSchwab, Alexander$$b1
001040618 7001_ $$aLi, Jingjing$$b2
001040618 7001_ $$aRücker, Ulrich$$b3
001040618 7001_ $$aZakalek, Paul$$b4
001040618 7001_ $$aMauerhofer, Eric$$b5
001040618 7001_ $$aDawidowski, Javier$$b6
001040618 7001_ $$aGutberlet, Thomas$$b7
001040618 773__ $$0PERI:(DE-600)2595693-0$$a10.1140/epjp/s13360-025-06046-0$$gVol. 140, no. 2, p. 114$$n2$$p114$$tThe European physical journal / Plus$$v140$$x2190-5444$$y2025
001040618 8564_ $$uhttps://juser.fz-juelich.de/record/1040618/files/Schmidt_EPJPLus_2025.pdf$$yOpenAccess
001040618 8767_ $$d2025-08-11$$eHybrid-OA$$jDEAL
001040618 909CO $$ooai:juser.fz-juelich.de:1040618$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001040618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192138$$aForschungszentrum Jülich$$b0$$kFZJ
001040618 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001040618 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001040618 9141_ $$y2025
001040618 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001040618 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001040618 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040618 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001040618 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
001040618 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-21$$wger
001040618 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001040618 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040618 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
001040618 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001040618 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001040618 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001040618 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001040618 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001040618 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001040618 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001040618 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x2
001040618 9801_ $$aFullTexts
001040618 980__ $$ajournal
001040618 980__ $$aVDB
001040618 980__ $$aUNRESTRICTED
001040618 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001040618 980__ $$aI:(DE-82)080009_20140620
001040618 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
001040618 980__ $$aAPC